An iron rod of length $2m$ and cross section area of $50\,m{m^2}$, stretched by $0.5\, mm$, when a mass of $250\, kg$ is hung from its lower end. Young's modulus of the iron rod is
$19.6 \times {10^{10}}\,N/{m^2}$
$19.6 \times {10^{15}}\,N/{m^2}$
$19.6 \times {10^{18}}\,N/{m^2}$
$19.6 \times {10^{20}}\,N/{m^2}$
There are two wires of same material and same length while the diameter of second wire is $2$ times the diameter of first wire, then ratio of extension produced in the wires by applying same load will be
A stone is tied to an elastic string of negligible mass and spring constant $k$. The unstretched length of the string is $L$ and has negligible mass. The other end of the string is fixed to a nail at a point $P$. Initially the stone is at the same level as the point $P$. The stone is dropped vertically from point $P$.
$(a)$ Find the distance $'y'$ from the top when the mass comes to rest for an instant, for the first time.
$(b)$ What is the maximum velocity attained by the stone in this drop ?
$(c)$ What shall be the nature of the motion after the stone has reached its lowest point ?
Young's modules of material of a wire of length ' $L$ ' and cross-sectional area $A$ is $Y$. If the length of the wire is doubled and cross-sectional area is halved then Young's $modules$ will be :
The units of Young ‘s modulus of elasticity are
Two exactly similar wires of steel and copper are stretched by equal forces. If the total elongation is $2 \,cm$, then how much is the elongation in steel and copper wire respectively? Given, $Y_{\text {steel }}=20 \times 10^{11} \,dyne / cm ^2$, $Y_{\text {copper }}=12 \times 10^{11} \,dyne / cm ^2$