The force constant of a wire does not depend on

  • A

    Nature of the material

  • B

    Radius of the wire

  • C

    Length of the wire

  • D

    None of the above

Similar Questions

In an experiment to determine the Young's modulus, steel wires of five different lengths $(1,2,3,4$ and $5\,m )$ but of same cross section $\left(2\,mm ^{2}\right)$ were taken and curves between extension and load were obtained. The slope (extension/load) of the curves were plotted with the wire length and the following graph is obtained. If the Young's modulus of given steel wires is $x \times 10^{11}\,Nm ^{-2}$, then the value of $x$ is

  • [JEE MAIN 2022]

The value of Young's modulus for a perfectly rigid body is ...........

Figure shows graph between stress and strain for a uniform wire at two different femperatures. Then

Two wires of diameter $0.25 \;cm ,$ one made of steel and the other made of brass are loaded as shown in Figure. The unloaded length of steel wire is $1.5 \;m$ and that of brass wire is $1.0 \;m .$ Compute the elongations of the steel and the brass wires.

A steel wire of length $4.7\; m$ and cross-sectional area $3.0 \times 10^{-5}\; m ^{2}$ stretches by the same amount as a copper wire of length $3.5\; m$ and cross-sectional area of $4.0 \times 10^{-5} \;m ^{2}$ under a given load. What is the ratio of the Young's modulus of steel to that of copper?