7.Gravitation
hard

The masses and radii of the earth and moon are $\left({M}_{1}, {R}_{1}\right)$ and $\left({M}_{2}, {R}_{2}\right)$ respectively. Their centres are at a distance ' ${r}$ ' apart. Find the minimum escape velocity for a particle of mass ' ${m}$ ' to be projected from the middle of these two masses:

A

${V}=\frac{1}{2} \sqrt{\frac{4 {G}\left({M}_{1}+{M}_{2}\right)}{{r}}}$

B

${V}=\sqrt{\frac{4 {G}\left({M}_{1}+{M}_{2}\right)}{{r}}}$

C

${V}=\frac{1}{2} \sqrt{\frac{2 {G}\left({M}_{1}+{M}_{2}\right)}{{r}}}$

D

${V}=\frac{\sqrt{2 {G}}\left({M}_{1}+{M}_{2}\right)}{{r}}$

(JEE MAIN-2021)

Solution

$\frac{1}{2} {mV}^{2}-\frac{{GM}_{1} {m}}{{r} / 2}-\frac{{GM}_{2} {m}}{{r} / 2}=0$

$\frac{1}{2} {mV}^{2}=\frac{2 {Gm}}{{r}}\left({M}_{1}+{M}_{2}\right)$

${V}=\sqrt{\frac{4 {G}\left({M}_{1}+{M}_{2}\right)}{{r}}}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.