Aplane electromagnetic wave is incident on a plane surface of area A normally, and is perfectly reflected. If energy $E$ strikes the surface in time $t$ then average pressure exerted on the surface is ( $c=$ speed of light)
$0$
$\frac{E}{ { Atc }}$
$\frac{2 E}{{ Atc }}$
$\frac{E}{c}$
The electric field of a plane electromagnetic wave is given by
$\overrightarrow{\mathrm{E}}=\mathrm{E}_{0} \frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}}{\sqrt{2}} \cos (\mathrm{kz}+\omega \mathrm{t})$ At $\mathrm{t}=0,$ a positively charged particle is at the point $(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left(0,0, \frac{\pi}{\mathrm{k}}\right) .$ If its instantaneous velocity at $(t=0)$ is $v_{0} \hat{\mathrm{k}},$ the force acting on it due to the wave is
Which scientist first time produced electromagnetic waves in laboratory?
Light is an electromagnetic wave. Its speed in vacuum is given by the expression
A TV tower has a height of 100 m. The average population density around the tower is 1000 per $km^2$. The radius of the earth is $6.4 \times {10^6}$m. the population covered by the tower is
An infinitely long thin wire carrying a uniform linear static charge density $\lambda $ is placed along the $z-$ axis (figure). The wire is set into motion along its length with a uniform velocity $V = v{\hat k_z}$. Calculate the pointing vector $S = \frac{1}{{{\mu _0}}}(\vec E \times \vec B)$ .