Aplane electromagnetic wave is incident on a plane surface of area A normally, and is perfectly reflected. If energy $E$ strikes the surface in time $t$ then average pressure exerted on the surface is ( $c=$ speed of light)

  • A

    $0$

  • B

    $\frac{E}{ { Atc }}$

  • C

    $\frac{2 E}{{ Atc }}$

  • D

    $\frac{E}{c}$

Similar Questions

The electric field of a plane electromagnetic wave is given by

$\overrightarrow{\mathrm{E}}=\mathrm{E}_{0} \frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}}{\sqrt{2}} \cos (\mathrm{kz}+\omega \mathrm{t})$ At $\mathrm{t}=0,$ a positively charged particle is at the point $(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left(0,0, \frac{\pi}{\mathrm{k}}\right) .$ If its instantaneous velocity at $(t=0)$ is $v_{0} \hat{\mathrm{k}},$ the force acting on it due to the wave is

  • [JEE MAIN 2020]

Which scientist first time produced electromagnetic waves in laboratory?

Light is an electromagnetic wave. Its speed in vacuum is given by the expression

  • [AIIMS 2002]

A TV tower has a height of 100 m. The average population density around the tower is 1000 per $km^2$. The radius of the earth is $6.4 \times {10^6}$m. the population covered by the tower is

An infinitely long thin wire carrying a uniform linear static charge density $\lambda $ is placed along the $z-$ axis (figure). The wire is set into motion along its length with a uniform velocity $V = v{\hat k_z}$. Calculate the pointing vector $S = \frac{1}{{{\mu _0}}}(\vec E \times \vec B)$ .