The magnetic field vector of an electromagnetic wave is given by ${B}={B}_{o} \frac{\hat{{i}}+\hat{{j}}}{\sqrt{2}} \cos ({kz}-\omega {t})$; where $\hat{i}, \hat{j}$ represents unit vector along ${x}$ and ${y}$-axis respectively. At $t=0\, {s}$, two electric charges $q_{1}$ of $4\, \pi$ coulomb and ${q}_{2}$ of $2 \,\pi$ coulomb located at $\left(0,0, \frac{\pi}{{k}}\right)$ and $\left(0,0, \frac{3 \pi}{{k}}\right)$, respectively, have the same velocity of $0.5 \,{c} \hat{{i}}$, (where ${c}$ is the velocity of light). The ratio of the force acting on charge ${q}_{1}$ to ${q}_{2}$ is :-

  • [JEE MAIN 2021]
  • A

    $2 \sqrt{2}: 1$

  • B

    $1: \sqrt{2}$

  • C

    $2: 1$

  • D

    $\sqrt{2}: 1$

Similar Questions

A linearly polarized electromagnetic wave in vacuum is $E=3.1 \cos \left[(1.8) z-\left(5.4 \times 10^{6}\right) {t}\right] \hat{\text { i }}\, {N} / {C}$ is incident normally on a perfectly reflecting wall at $z=a$. Choose the correct option

  • [JEE MAIN 2021]

Electric field of plane electromagnetic wave propagating through a non-magnetic medium is given by ${E}=20 \cos \left(2 \times 10^{10} {t}-200 {x}\right) \,{V} / {m} .$ The dielectric constant of the medium is equal to :

(Take $\mu_{{r}}=1$ )

  • [JEE MAIN 2021]

Which of the following statement is true for displacement current

The electric field associated with an $e.m.$ wave in vacuum is given by $\vec E = \hat i\,40\,\cos \,\left( {kz - 6 \times {{10}^8}\,t} \right)$. where $E$, $z$ and $t$ are in $volt/m$, meter and seconds respectively. The value of wave factor $k$ is ....... $m^{-1}$.

A beam of light travelling along $X$-axis is described by the electric field $E _{ y }=900 \sin \omega( t - x / c )$. The ratio of electric force to magnetic force on a charge $q$ moving along $Y$-axis with a speed of $3 \times 10^{7}\,ms ^{-1}$ will be.

[Given speed of light $=3 \times 10^{8}\,ms ^{-1}$ ]

  • [JEE MAIN 2022]