Gujarati
Hindi
10-2. Parabola, Ellipse, Hyperbola
normal

Area of the triangle formed by the lines $x -y = 0, x + y = 0$ and any tangent to the hyperbola $x^2 -y^2 = a^2$ is :-

A

$|a|$

B

$\frac{1}{2} |a|$

C

$a^2$

D

$\frac{1}{2} a^2$

Solution

Any tangent to the hyperbola at

$\mathrm{P}(\mathrm{a} \sec \theta, \mathrm{a} \tan \theta)$ is

$x \sec \theta-y \tan \theta=a$          …..$(1)$

Also; $\quad \mathrm{x}-\mathrm{y}=0$        ……$(2)$

$\mathrm{x}+\mathrm{y}=0$         …..$(3)$

from $(1),(2) $ and $(3) ;$ we get

$A\left(\frac{a}{\sec \theta-\tan \theta}, \frac{a}{\sec \theta-\tan \theta}\right) ; B\left(\frac{a}{\sec \theta+\tan \theta}, \frac{-a}{\sec \theta+\tan \theta}\right)$

${\&\,\, \mathrm{C}(0,0)} $

${\text { Area of } \Delta \mathrm{ABC}=\frac{1}{2}\left(\mathrm{x}_{1} \mathrm{y}_{2}-\mathrm{x}_{2} \mathrm{y}_{1}\right)}$

$={\frac{\mathrm{a}^{2}}{2}\left(\frac{-1}{\sec ^{2} \theta-\tan ^{2} \theta}-\frac{1}{\sec ^{2} \theta-\tan ^{2} \theta}\right)} $

${=\frac{\mathrm{a}^{2}}{2}(-2)=-\mathrm{a}^{2}=\mathrm{a}^{2}}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.