For $0<\theta<\pi / 2$, if the eccentricity of the hyperbola $\mathrm{x}^2-\mathrm{y}^2 \operatorname{cosec}^2 \theta=5$ is $\sqrt{7}$ times eccentricity of the ellipse $x^2 \operatorname{cosec}^2 \theta+y^2=5$, then the value of $\theta$ is :

  • [JEE MAIN 2024]
  • A

    $\frac{\pi}{6}$

  • B

    $\frac{5 \pi}{12}$

  • C

    $\frac{\pi}{3}$

  • D

    $\frac{\pi}{4}$

Similar Questions

The equation of the normal to the hyperbola $\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1$ at $( - 4,\;0)$ is

The product of the perpendiculars drawn from any point on a hyperbola to its asymptotes is

The distance between the directrices of the hyperbola $x = 8\sec \theta ,\;\;y = 8\tan \theta $ is

Let $\lambda x-2 y=\mu$ be a tangent to the hyperbola $a^{2} x^{2}-y^{2}=b^{2}$. Then $\left(\frac{\lambda}{a}\right)^{2}-\left(\frac{\mu}{b}\right)^{2}$ is equal to

  • [JEE MAIN 2022]

The values of parameter $'a'$ such that the line $\left( {{{\log }_2}\left( {1 + 5a - {a^2}} \right)} \right)x - 5y - \left( {{a^2} - 5} \right) = 0$ is a normal to the curve $xy = 1$ , may lie in the interval