10-2. Parabola, Ellipse, Hyperbola
medium

For $0<\theta<\pi / 2$, if the eccentricity of the hyperbola $\mathrm{x}^2-\mathrm{y}^2 \operatorname{cosec}^2 \theta=5$ is $\sqrt{7}$ times eccentricity of the ellipse $x^2 \operatorname{cosec}^2 \theta+y^2=5$, then the value of $\theta$ is :

A

$\frac{\pi}{6}$

B

$\frac{5 \pi}{12}$

C

$\frac{\pi}{3}$

D

$\frac{\pi}{4}$

(JEE MAIN-2024)

Solution

$e_h=\sqrt{1+\sin ^2 \theta}$

$e_c=\sqrt{1-\sin ^2 \theta}$

$e_h=\sqrt{7} e_c$

$1+\sin ^2 \theta=7\left(1-\sin ^2 \theta\right)$

$1+\sin ^2 \theta=7\left(1-\sin ^2 \theta\right)$

$\sin ^2 \theta=\frac{6}{8}=\frac{3}{4}$

$\sin \theta=\frac{\sqrt{3}}{2}$

$\theta=\frac{\pi}{3}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.