The capacity and the energy stored in a parallel plate condenser with air between its plates are respectively ${C_o}$ and ${W_o}$. If the air is replaced by glass (dielectric constant $= 5$ ) between the plates, the capacity of the plates and the energy stored in it will respectively be
$5{C_o},\;5{W_o}$
$5{C_o},\;\frac{{{W_0}}}{5}$
$\frac{{{C_o}}}{5},\;5{W_o}$
$\frac{{{C_o}}}{5},\frac{{{W_o}}}{5}$
When a dielectric material is introduced between the plates of a charges condenser, then electric field between the plates
An uncharged parallel plate capacitor having a dielectric of constant $K$ is connected to a similar air cored parallel capacitor charged to a potential $V$. The two capacitors share charges and the common potential is $V$. The dielectric constant $K$ is
Two thin dielectric slabs of dielectric constants $K_1$ and $K_2$ $(K_1 < K_2)$ are inserted between plates of a parallel plate capacitor, as shown in the figure. The variation of electric field $E$ between the plates with distance $d$ as measured from plate $P$ is correctly shown by
A slab of dielectric constant $K$ has the same crosssectional area as the plates of a parallel plate capacitor and thickness $\frac{3}{4}\,d$, where $d$ is the separation of the plates. The capacitance of the capacitor when the slab is inserted between the plates will be.(Given $C _{0}=$ capacitance of capacitor with air as medium between plates.)
A capacitor is connected to a $10\,V$ battery. The charge on the plates is $10\,\mu C$ when medium between plates is air. The charge on the plates become $100\,\mu C$ when space between plates is filled with oil. The dielectric constant of oil is