Two parallel plate capacitors of capacity $C$ and $3\,C$ are connected in parallel combination and charged to a potential difference $18\,V$. The battery is then disconnected and the space between the plates of the capacitor of capacity $C$ is completely filled with a material of dielectric constant $9$. The final potential difference across the combination of capacitors will be $V$
$5$
$4$
$6$
$1$
A parallel plate condenser with a dielectric of dielectric constant $K$ between the plates has a capacity $C$ and is charged to a potential $V\ volt$. The dielectric slab is slowly removed from between the plates and then reinserted. The net work done by the system in this process is
A parallel plate capacitor having a separation between the plates $d$ , plate area $A$ and material with dielectric constant $K$ has capacitance $C_0$. Now one-third of the material is replaced by another material with dielectric constant $2K$, so that effectively there are two capacitors one with area $\frac{1}{3}\,A$ , dielectric constant $2K$ and another with area $\frac{2}{3}\,A$ and dielectric constant $K$. If the capacitance of this new capacitor is $C$ then $\frac{C}{{{C_0}}}$ is
A parallel plate capacitor is first charged and then a dielectric slab is introduced between the plates. The quantity that remains unchanged is
The distance between plates of a parallel plate capacitor is $5d$. Let the positively charged plate is at $ x=0$ and negatively charged plate is at $x=5d$. Two slabs one of conductor and other of a dielectric of equal thickness $d$ are inserted between the plates as shown in figure. Potential versus distance graph will look like :
A parallel plate condenser is connected with the terminals of a battery. The distance between the plates is $6\,mm$. If a glass plate (dielectric constant $K = 9$) of $4.5\,mm$ is introduced between them, then the capacity will become.......$times$