Gujarati
Hindi
3-2.Motion in Plane
normal

At $t = 0$ a projectile is fired from a point $O$(taken as origin) on the ground with a speed of $50\,\, m/s$ at an angle of $53^o$ with the horizontal. It just passes two points $A \& B$ each at height $75 \,\,m$ above horizontal as shown The distance (in metres) of the particle from origin at $t = 2$ sec.

A

$60\sqrt 2 $

B

$100$

C

$60$

D

$120$

Solution

$\theta=53^{\circ}$

$u=50m/s$

$u_{x}=u \cos \theta \Rightarrow u_{x}=50 \times \frac{3}{5}$

$u_{x}=30 \mathrm{m} / \mathrm{s}$

$u_{y}=u \sin \theta \Rightarrow u_{y}50\times \frac{4}{5}$

$u_{y}=40 \mathrm{m} / \mathrm{s}$

$S=w t+\frac{1}{2} a t^{2}$

$a_{x}=0$

$a_{y}=-g \Rightarrow-10 \mathrm{m} / \mathrm{s}^{2}$

$x \rightarrow 30 \times 2+\frac{1}{2} \times 0$

$x=60 \mathrm{m}$

$y=40 x^{2}-\frac{1}{2} x+0 \times 4$

$y=80-20 \Rightarrow y=60 m$

$=\sqrt{(60)^{2}+(60)^{2}}$

$=60 \sqrt{2} \mathrm{m} / \mathrm{s}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.