At distance of $5$ $cm$ and $10$ $cm $ outwards from the surface of a uniformly charged solid sphere, the potentials are $100$ $V$ and $75$ $V$ respectively . Then
potential at its surface is $150 $ $V.$
the electric potential at its centre is $225$ $V$.
the electric field on the surface is $1500$ $V/m$.
all of the above
A thin spherical insulating shell of radius $R$ carries a uniformly distributed charge such that the potential at its surface is $V _0$. A hole with a small area $\alpha 4 \pi R ^2(\alpha<<1)$ is made on the shell without affecting the rest of the shell. Which one of the following statements is correct?
At a certain distance from a point charge, the field intensity is $500\, Vm^{-1}$ and the potential is $-3000\, V$. The distance to the charge and the magnitude of the charge respectively are
Define electric potential and explain it. Write its $\mathrm{SI}$ unit and give its other units.
Is electrostatic potential vector or scalar ?
Two tiny spheres carrying charges $1.5 \;\mu\, C$ and $2.5\; \mu\, C$ are located $30 \;cm$ apart. Find the potential and electric field
$(a)$ at the mid-point of the line joining the two charges, and
$(b)$ at a point $10\; cm$ from this midpoint in a plane normal to the line and passing through the mid-point.