Gujarati
Hindi
10-2. Parabola, Ellipse, Hyperbola
normal

At the point of intersection of the rectangular hyperbola $ xy = c^2 $ and the parabola $y^2 = 4ax$  tangents to the rectangular hyperbola and the parabola make an angle $ \theta $ and $ \phi $ respectively with the axis of $X$, then

A

$\theta = tan^{-1} (- 2 tan\phi )$

B

$\phi = tan^{-1}(- 2 tan\theta )$

C

$\theta = tan^{-1} (- tan\phi )$

D

$\phi = tan^{-1} (- tan\theta )$

Solution

Let $ (x_1, y_1)$  be the point of intersection $ \Rightarrow $ $y_1^2\, = \,4a{x_1}\,$ and $ x_1y_1 = c^2$
$Y^2 = 4ax $                     $xy = c^2$
  $\frac{{dy}}{{dx}}\, = \,\frac{{2a}}{y}\,$                  $\frac{{dy}}{{dx}}\, = \, – \,\,\frac{y}{x}\,\,$ 
${\frac{{dy}}{{dx}}_{({x_1},{y_1})}}\, = \,\,\,\tan \phi \,\,\, = \,\,\,\frac{{2a}}{{{y_1}}}\,$                  ${\frac{{dy}}{{dx}}_{({x_1},{y_1})}}\, = \,\tan \theta \, = \, – \,\frac{{{y_1}}}{{{x_1}}}$
$\frac{{\tan \theta }}{{\tan \phi }}\,\, = \,\,\frac{{ – {y_1}/{x_1}}}{{2a/{y_1}}}\,\, = \,\,\frac{{ – y_1^2}}{{2a{x_1}}}\,\, = \,\, – \,\,\frac{{4a{x_1}}}{{2a{x_1}}}\,\, = \,\, – 2$
$\Rightarrow$ $\theta = \tan^{-1} (- 2 \tan\phi )$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.