Gujarati
10-2. Parabola, Ellipse, Hyperbola
easy

If the line $y = 2x + \lambda $ be a tangent to the hyperbola $36{x^2} - 25{y^2} = 3600$, then $\lambda = $

A

$16$

B

$-16$

C

$ \pm 16$

D

None of these

Solution

(c) If $y = 2x + \lambda $ is tangent to given hyperabola,

then $\lambda = \pm \sqrt {{a^2}{m^2} – {b^2}} = \pm \sqrt {(100)\,(4) – 144}$

$= \pm \sqrt {256} = \pm 16$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.