- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
hard
Let $H$ be the hyperbola, whose foci are $(1 \pm \sqrt{2}, 0)$ and eccentricity is $\sqrt{2}$. Then the length of its latus rectum is
A
$2$
B
$3$
C
$\frac{5}{2}$
D
$\frac{3}{2}$
(JEE MAIN-2023)
Solution
$2 ae =|(1+\sqrt{2})-(1+\sqrt{2})|=2 \sqrt{2}$
$ae =\sqrt{2}$
$a =1$
$\Rightarrow b =1 \quad \because e =\sqrt{2} \Rightarrow \text { Hyperbola is rectangular }$
$\Rightarrow \text { L.R }=\frac{2 b ^2}{ a }=2$
Standard 11
Mathematics