By using properties of determinants, show that:

$\left|\begin{array}{ccc}0 & a & -b \\ -a & 0 & -c \\ b & c & 0\end{array}\right|=0$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We have,

$\Delta=\left|\begin{array}{ccc}0 & a & -b \\ -a & 0 & -c \\ b & c & 0\end{array}\right|$

Applying $R_{1} \rightarrow c R_{1},$ we have:

$\Delta=\frac{1}{c}\left|\begin{array}{ccc}0 & a c & -b c \\ -a & 0 & -c \\ b & c & 0\end{array}\right|$

Applying $R_{1} \rightarrow R_{1}-b R_{2},$ we have:

$\Delta=\frac{1}{c}\left|\begin{array}{ccc}a b & a c & 0 \\ -a & 0 & -c \\ b & c & 0\end{array}\right|$

$=\frac{a}{c}\left|\begin{array}{ccc}b & c & 0 \\ -a & 0 & -c \\ b & c & 0\end{array}\right|$

Here, the two rows $R_{1}$ and $R_{3}$ are identical.

$\therefore \Delta=0$

Similar Questions

If $A =$ $\left[ {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right]$ (where $bc \ne 0$) satisfies the equations $x^2 + k = 0$, then

Let $a, b, c, d$ be in arithmetic progression with common difference $\lambda$. If

$\left|\begin{array}{lll} x+a-c & x+b & x+a \\ x-1 & x+c & x+b \\ x-b+d & x+d & x+c \end{array}\right|=2$

then value of $\lambda^{2}$ is equal to $.....$

  • [JEE MAIN 2021]

If $\left| {\begin{array}{*{20}{c}}   {a - b}&{b - c}&{c - a} \\    {b - c}&{c - a}&{a - b} \\    {c - a + 1}&{a - b}&{b - c}  \end{array}} \right| = 0$ ,$\left( {a,b,c \in R - \left\{ 0 \right\}} \right),$ then

$\left| {\,\begin{array}{*{20}{c}}{a + b}&{b + c}&{c + a}\\{b + c}&{c + a}&{a + b}\\{c + a}&{a + b}&{b + c}\end{array}\,} \right| = K\,\,\left| {\,\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}\,} \right|\,,$ then $K = $

Using the property of determinants and without expanding, Prove that 

$\left|\begin{array}{lll}x & a & x+a \\ y & b & y+b \\ z & c & z+c\end{array}\right|=0$