By using properties of determinants, show that:
$\left|\begin{array}{ccc}0 & a & -b \\ -a & 0 & -c \\ b & c & 0\end{array}\right|=0$
We have,
$\Delta=\left|\begin{array}{ccc}0 & a & -b \\ -a & 0 & -c \\ b & c & 0\end{array}\right|$
Applying $R_{1} \rightarrow c R_{1},$ we have:
$\Delta=\frac{1}{c}\left|\begin{array}{ccc}0 & a c & -b c \\ -a & 0 & -c \\ b & c & 0\end{array}\right|$
Applying $R_{1} \rightarrow R_{1}-b R_{2},$ we have:
$\Delta=\frac{1}{c}\left|\begin{array}{ccc}a b & a c & 0 \\ -a & 0 & -c \\ b & c & 0\end{array}\right|$
$=\frac{a}{c}\left|\begin{array}{ccc}b & c & 0 \\ -a & 0 & -c \\ b & c & 0\end{array}\right|$
Here, the two rows $R_{1}$ and $R_{3}$ are identical.
$\therefore \Delta=0$
If $A =$ $\left[ {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right]$ (where $bc \ne 0$) satisfies the equations $x^2 + k = 0$, then
Let $a, b, c, d$ be in arithmetic progression with common difference $\lambda$. If
$\left|\begin{array}{lll} x+a-c & x+b & x+a \\ x-1 & x+c & x+b \\ x-b+d & x+d & x+c \end{array}\right|=2$
then value of $\lambda^{2}$ is equal to $.....$
If $\left| {\begin{array}{*{20}{c}} {a - b}&{b - c}&{c - a} \\ {b - c}&{c - a}&{a - b} \\ {c - a + 1}&{a - b}&{b - c} \end{array}} \right| = 0$ ,$\left( {a,b,c \in R - \left\{ 0 \right\}} \right),$ then
$\left| {\,\begin{array}{*{20}{c}}{a + b}&{b + c}&{c + a}\\{b + c}&{c + a}&{a + b}\\{c + a}&{a + b}&{b + c}\end{array}\,} \right| = K\,\,\left| {\,\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}\,} \right|\,,$ then $K = $
Using the property of determinants and without expanding, Prove that
$\left|\begin{array}{lll}x & a & x+a \\ y & b & y+b \\ z & c & z+c\end{array}\right|=0$