Let $A$ be a $3 \times 3$ matrix with $\operatorname{det}( A )=4$. Let $R _{ i }$ denote the $i ^{\text {th }}$ row of $A$. If a matrix $B$ is obtained by performing the operation $R _{2} \rightarrow 2 R _{2}+5 R _{3}$ on $2 A ,$ then $\operatorname{det}( B )$ is equal to ...... .

  • [JEE MAIN 2021]
  • A

    $16$

  • B

    $80$

  • C

    $128$

  • D

    $64$

Similar Questions

Let $a, b, c, d$ be in arithmetic progression with common difference $\lambda$. If

$\left|\begin{array}{lll} x+a-c & x+b & x+a \\ x-1 & x+c & x+b \\ x-b+d & x+d & x+c \end{array}\right|=2$

then value of $\lambda^{2}$ is equal to $.....$

  • [JEE MAIN 2021]

The value of the determinant $\left| {\,\begin{array}{*{20}{c}}{31}&{37}&{92}\\{31}&{58}&{71}\\{31}&{105}&{24}\end{array}\,} \right|$ is

If $a, b, c$ are real then the value of determinant $\left| {\begin{array}{*{20}{c}} {{a^2} + 1}&{ab}&{ac}\\{ab}&{{b^2} + 1}&{bc}\\{ac}&{bc}&{{c^2} + 1}\end{array}}\right|$ $= 1$ if

$\left| {\,\begin{array}{*{20}{c}}{b + c}&{a - b}&a\\{c + a}&{b - c}&b\\{a + b}&{c - a}&c\end{array}\,} \right| = $

If $D =$ $\left| {\,\begin{array}{*{20}{c}}{\frac{1}{z}}&{\frac{1}{z}}&{ - \frac{{(x + y)}}{{{z^2}}}}\\{ - \frac{{(y + z)}}{{{x^2}}}}&{\frac{1}{x}}&{\frac{1}{x}}\\{ - \frac{{y(y + z)}}{{{x^2}z}}}&{\frac{{x + 2y + z}}{{xz}}}&{ - \frac{{y(x +y)}}{{x{z^2}}}}\end{array}\,} \right|$ then, the incorrect statement is