सारणिकों के गुणधर्मों का प्रयोग करके सिद्ध कीजिए :

$\left|\begin{array}{ccc}
1 & 1 & 1 \\
a & b & c \\
a^{3} & b^{3} & c^{3}
\end{array}\right|=(a-b)(b-c)(c-a)(a+b+c)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $\Delta=\left|\begin{array}{lll}1 & 1 & 1 \\ a & b & c \\ a^{3} & b^{3} & c^{3}\end{array}\right|$

Applying $C_{1} \rightarrow C_{1}-C_{3}$ and $C_{2} \rightarrow C_{2}-C_{3},$ we have:

$\Delta=\left|\begin{array}{ccc}0 & 0 & 1 \\ a-c & b-c & c \\ a^{3}-c^{3} & b^{3}-c^{3} & c^{3}\end{array}\right|$

$=\left|\begin{array}{ccc}0 & 0 & 1 \\ a-c & b-c & c \\ (a-c)\left(a^{2}+a c+c^{2}\right) & (b-c)\left(b^{2}+b c+^{2}\right) & c^{3}\end{array}\right|$

$ = (c - a)(b - c)\left| {\begin{array}{*{20}{c}}
  0&0&1 \\ 
  { - 1}&1&c \\ 
  { - ({a^2} + ac + {c^2})}&{({b^2} + bc + {c^2})}&{{c^3}} 
\end{array}} \right|$

Applying $C_{1} \rightarrow C_{1}+C_{2},$ we have:

$\Delta=(c-a)(b-c)\left|\begin{array}{ccc}0 & 0 & 1 \\ 0 & 1 & c \\ \left(b^{2}-a^{2}\right)+(b c-a c) & \left(b^{2}+b c+c^{2}\right) & c^{3}\end{array}\right|$

$=(b-c)(c-a)(a-b)\left|\begin{array}{ccc}0 & 0 & 1 \\ 0 & 0 & c \\ -(a+b+c) & \left(b^{2}+b c+c^{2}\right) & c^{3}\end{array}\right|$

$=(a-b)(b-c)(c-a)(a+b+c)\left|\begin{array}{ccc}0 & 0 & 1 \\ 0 & 1 & c \\ -1 & \left(b^{2}+b c+c^{2}\right) & c^{3}\end{array}\right|$

Expanding along $C_{1}$, we have:

$\Delta=(a-b)(b-c)(c-a)(a+b+c)(-1)\left|\begin{array}{cc}0 & 1 \\ 1 & c\end{array}\right|$

$=(a-b)(b-c)(c-a)(a+b+c)$

Hence, the given result is proved.

Similar Questions

समीकरण $\left| {\,\begin{array}{*{20}{c}}{x + \alpha }&\beta &\gamma \\\gamma &{x + \beta }&\alpha \\\alpha &\beta &{x + \gamma }\end{array}\,} \right| = 0$ से प्राप्त $x$ के मान होंगे 

सारणिकों के गुणधर्मों का प्रयोग करके सिद्ध कीजिए :

$\left|\begin{array}{ccc}0 & a & -b \\ -a & 0 & -c \\ b & c & 0\end{array}\right|=0$

यदि $\Delta=\left|\begin{array}{ccc}2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7\end{array}\right|$ है तो गुणधर्म $2$ का सत्यापन कीजिए।

दर्शाइए कि $\left|\begin{array}{ccc}1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c\end{array}\right|=a b c\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=a b c+b c+c a+a b$

$\left| {\,\begin{array}{*{20}{c}}{{a^2} + {x^2}}&{ab}&{ca}\\{ab}&{{b^2} + {x^2}}&{bc}\\{ca}&{bc}&{{c^2} + {x^2}}\end{array}\,} \right|$ का भाजक है