નિશ્ચાયકના ગુણધર્મનો ઉપયોગ કરીને સાબિત કરો : $\left|\begin{array}{ccc}1 & x & x^{2} \\ x^{2} & 1 & x \\ x & x^{2} & 1\end{array}\right|=\left(1-x^{3}\right)^{2}$
$\Delta=\left|\begin{array}{ccc}1 & x & x^{2} \\ x^{2} & 1 & x \\ x & x^{2} & 1\end{array}\right|$
Applying $R_{1} \rightarrow R_{1}+R_{2}+R_{3},$ we have:
$\Delta=\left|\begin{array}{ccc}1+x+x^{2} & 1+x+x^{2} & 1+x+x^{2} \\ x^{2} & 1 & x \\ x & x^{2} & 1\end{array}\right|$
Applying $C_{2} \rightarrow C_{2}-C_{1}$ and $C_{3} \rightarrow C_{3}-C_{1},$ we have:
$\Delta=\left(1+x+x^{2}\right)\left|\begin{array}{ccc}1 & 0 & 0 \\ x^{2} & 1-x^{2} & x-x^{2} \\ x & x^{2}-x & 1-x\end{array}\right|$
$=\left(1+x+x^{2}\right)(1-x)(1-x)\left|\begin{array}{ccc}1 & 0 & 0 \\ x^{2} & 1+x & x \\ x & -x & 1\end{array}\right|$
$=\left(1-x^{3}\right)(1-x)\left|\begin{array}{ccc}1 & 0 & 0 \\ x^{2} & 1+x & x \\ x & -x & 1\end{array}\right|$
Expanding along $R_{1},$ we have:
$\Delta=\left.\left(1-x^{3}\right)(1-x)(1)\right|_{-x} ^{1+x} \quad 1 |$
$=\left(1-x^{3}\right)(1-x)\left(1+x+x^{2}\right)$
$=\left(1-x^{3}\right)\left(1-x^{3}\right)$
$=\left(1-x^{3}\right)^{2}$
Hence, the given result is proved.
જો $a, b$ અને $c$ વાસ્તવિક સંખ્યાઓ હોય, અને $\Delta=\left|\begin{array}{lll}
b+c & c+a & a+b \\
c+a & a+b & b+c \\
a+b & b+c & c+a
\end{array}\right|=0$ હોય, તો સાબિત કરો કે $a+b+c=0$ અથવા $a=b=c$.
નિશ્ચાયકના ગુણધર્મનો ઉપયોગ કરીને સાબિત કરો : $\left|\begin{array}{ccc}y+k & y & y \\ y & y+k & y \\ y & y & y+k\end{array}\right|=k^{2}(3 x+k)$
નિશ્ચાયકના ગુણધર્મનો ઉપયોગ કરી અને વિસ્તરણ કર્યા સિવાય સાબિત કરો : $\left|\begin{array}{lll}b+c & q+r & y+z \\ c+a & r+p & z+x \\ a+b & p+q & x+y\end{array}\right|=2\left|\begin{array}{lll}a & p & x \\ b & q & y \\ c & r & z\end{array}\right|$
નિશ્ચાયકના ગુણધર્મનો ઉપયોગ કરીને સાબિત કરો : $\left|\begin{array}{ccc}x+y+2 z & x & y \\ z & y+z+2 x & y \\ z & x & z+x+2 y\end{array}\right|=2(x+y+z)^{3}$
$\left| {\,\begin{array}{*{20}{c}}{{5^2}}&{{5^3}}&{{5^4}}\\{{5^3}}&{{5^4}}&{{5^5}}\\{{5^4}}&{{5^5}}&{{5^7}}\end{array}\,} \right|$ = . . .