$\left| {\,\begin{array}{*{20}{c}}1&1&1\\{bc}&{ca}&{ab}\\{b + c}&{c + a}&{a + b}\end{array}\,} \right|$ =

  • A

    $1$

  • B

    $0$

  • C

    $(a - b)(b - c)(c - a)$

  • D

    $(a + b)(b + c)(c + a)$

Similar Questions

ધારો કે $A$ એ $\operatorname{det}( A )=4$ થાય તેવો $3 \times 3$ શ્રેણિક છે. ધારોકે $R _{ i }$ એ શ્રેણિક $A$ ની $i$ મી હાર દર્શાવે છે. જે $2A$ પર પ્રક્રિયા $R _{2} \rightarrow 2 R _{2}+5 R _{3}$ કરી શ્રેણિક $B$ મેળવવામાં આવે, તો $\operatorname{det}( B ) =.........$.

  • [JEE MAIN 2021]

નિશ્ચાયકના ગુણધર્મનો ઉપયોગ કરીને સાબિત કરો : $\left|\begin{array}{lll}x & x^{2} & y z \\ y & y^{2} & z x \\ z & z^{2} & x y\end{array}\right|=(x-y)(y-z)(z-x)(x y+y z+z x)$

જો $a,b,c$ એ ધન પૂર્ણાંક હોય , તો $\Delta = \left| {\,\begin{array}{*{20}{c}}{{a^2} + x}&{ab}&{ac}\\{ab}&{{b^2} + x}&{bc}\\{ac}&{bc}&{{c^2} + x}\end{array}\,} \right|$ એ . . . વડે વિભાજ્ય છે.

જો $A$, $B$ અને  $C$ ત્રિકોણના ખૂણા હોય તો નિશ્ચાયક 

$\left| {\begin{array}{*{20}{c}}
  { - 1 + \cos B}&{\cos C + \cos B}&{\cos B} \\ 
  {\cos C + \cos A}&{ - 1 + \cos A}&{\cos A} \\ 
  { - 1 + \cos B}&{ - 1 + \cos A}&{ - 1} 
\end{array}} \right|$ ની કિમંત મેળવો.

જો $a, b$ અને $c$ વાસ્તવિક સંખ્યાઓ હોય, અને $\Delta=\left|\begin{array}{lll}
b+c & c+a & a+b \\
c+a & a+b & b+c \\
a+b & b+c & c+a
\end{array}\right|=0$ હોય, તો સાબિત કરો કે $a+b+c=0$ અથવા $a=b=c$.