Calculate the degree of ionization of $0.05 \,M$ acetic acid if its $p K_{ a }$ value is $4.74$ 

How is the degree of dissociation affected when its solution also contains $(a)$ $0.01 \,M$ $(b)$ $0.1 \,M$ in $HCl$ ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$c=0.05 \,M$

$p K_{a}=4.74$

$p K_{a}=-\log \left(K_{a}\right)$

$K_{a}=1.82 \times 10^{-5}$

$K_{a}=c \alpha^{2}$ $\alpha=\sqrt{\frac{K_{a}}{c}}$

$\alpha=\sqrt{\frac{1.82 \times 10^{-5}}{5 \times 10^{-2}}}=1.908 \times 10^{-2}$

When $HCI$ is added to the solution, the concentration of $H ^{+}$ ions will increase. Therefore, the equilibrium will shift in the backward direction i.e., dissociation of acetic acid will decrease.

Case $I:$ When $0.01 \,M$ $HCl$ is taken.

Let $x$ be the amount of acetic acid dissociated after the addition of $HCl$.

                                    $C{H_3}COOH\quad  \leftrightarrow \quad {H^ + }\quad  + \quad C{H_3}CO{O^ - }$

Initial conc.                      $0.05\,M$                          $0$                       $0$

After dissociation           $0.05-x$                     $0.01+x$          $x$

As the dissociation of a very small amount of acetic acid will take place, the values i.e., $0.05-x$ and $0.01+x$ can be taken as $0.05$ and $0.01$ respectively.

$K_{a}=\frac{\left[ CH _{3} COO ^{-}\right]\left[ H ^{+}\right]}{\left[ CH _{3} COOH \right]}$

$\therefore K_{a}=\frac{(0.01) x}{0.05}$

$x=\frac{1.82 \times 10^{-5} \times 0.05}{0.01}$

$x=1.82 \times 10^{-3} \times 0.05 \,M$

Now, $\alpha=\frac{\text { Amount of acid dissociated }}{\text { Amount of acid taken }}$

$=\frac{1.82 \times 10^{-3} \times 0.05}{0.05}$

$=1.82 \times 10^{-3}$

Case $II:$ When $0.1 \,M$ $HCl$ is taken.

Let the amount of acetic acid dissociated in this case be $X$. As we have done in the first case, the concentrations of various species involved in the reaction are:

$\left[ CH _{3} COOH \right]=0.05-X ; 0.05\, M$

$\left[ CH _{3} COO ^{-}\right]=X$

$\left[ H ^{+}\right]=0.1+X ; 0.1 \,M$

$K_{a}=\frac{\left[ CH _{3} COO ^{-}\right]\left[ H ^{+}\right]}{\left[ CH _{3} COOH \right]}$

$\therefore K_{a}=\frac{(0.1) X}{0.05}$

$x=\frac{1.82 \times 10^{-5} \times 0.05}{0.1}$

$x=1.82 \times 10^{-4} \times 0.05 \,M$

Now,  $\alpha=\frac{\text { Amount of acid dissociated }}{\text { Amount of acid taken }}$

$=\frac{1.82 \times 10^{-4} \times 0.05}{0.05}$

$=1.82 \times 10^{-4}$

Similar Questions

The dissociation constant of an acid $HA$  is $1 \times {10^{ - 5}}$. The $pH$ of $0.1$ molar solution of the acid will be

Dimethyl amine ${\left( {C{H_3}} \right)_2}NH$ is weak base and its ionization constant $ 5.4 \times {10^{ - 5}}$. Calculate $\left[ {O{H^ - }} \right],\left[ {{H_3}O} \right]$, $pOH$ and $pH$ of its $0.2$ $M$ solution at equilibrium.

$25$ $mL$ $0.1$ $M$ $HCl$ solution is diluted till $500$ $mL$. Calculate $pH$ of dilute solution.

The hydrogen ion concentration of a $0.006\,M$ benzoic acid solution is $({K_a} = 6 \times {10^{ - 5}})$

What is the dissociation constant for $NH_4OH$ if at a given temperature its $0.1\,N$ solution has $pH = 11.27$ and the ionic product of water is $7.1 \times 10^{-15}$ (antilog $0.73 = 5.37$ )