Calculate the degree of ionization of $0.05 \,M$ acetic acid if its $p K_{ a }$ value is $4.74$ 

How is the degree of dissociation affected when its solution also contains $(a)$ $0.01 \,M$ $(b)$ $0.1 \,M$ in $HCl$ ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$c=0.05 \,M$

$p K_{a}=4.74$

$p K_{a}=-\log \left(K_{a}\right)$

$K_{a}=1.82 \times 10^{-5}$

$K_{a}=c \alpha^{2}$ $\alpha=\sqrt{\frac{K_{a}}{c}}$

$\alpha=\sqrt{\frac{1.82 \times 10^{-5}}{5 \times 10^{-2}}}=1.908 \times 10^{-2}$

When $HCI$ is added to the solution, the concentration of $H ^{+}$ ions will increase. Therefore, the equilibrium will shift in the backward direction i.e., dissociation of acetic acid will decrease.

Case $I:$ When $0.01 \,M$ $HCl$ is taken.

Let $x$ be the amount of acetic acid dissociated after the addition of $HCl$.

                                    $C{H_3}COOH\quad  \leftrightarrow \quad {H^ + }\quad  + \quad C{H_3}CO{O^ - }$

Initial conc.                      $0.05\,M$                          $0$                       $0$

After dissociation           $0.05-x$                     $0.01+x$          $x$

As the dissociation of a very small amount of acetic acid will take place, the values i.e., $0.05-x$ and $0.01+x$ can be taken as $0.05$ and $0.01$ respectively.

$K_{a}=\frac{\left[ CH _{3} COO ^{-}\right]\left[ H ^{+}\right]}{\left[ CH _{3} COOH \right]}$

$\therefore K_{a}=\frac{(0.01) x}{0.05}$

$x=\frac{1.82 \times 10^{-5} \times 0.05}{0.01}$

$x=1.82 \times 10^{-3} \times 0.05 \,M$

Now, $\alpha=\frac{\text { Amount of acid dissociated }}{\text { Amount of acid taken }}$

$=\frac{1.82 \times 10^{-3} \times 0.05}{0.05}$

$=1.82 \times 10^{-3}$

Case $II:$ When $0.1 \,M$ $HCl$ is taken.

Let the amount of acetic acid dissociated in this case be $X$. As we have done in the first case, the concentrations of various species involved in the reaction are:

$\left[ CH _{3} COOH \right]=0.05-X ; 0.05\, M$

$\left[ CH _{3} COO ^{-}\right]=X$

$\left[ H ^{+}\right]=0.1+X ; 0.1 \,M$

$K_{a}=\frac{\left[ CH _{3} COO ^{-}\right]\left[ H ^{+}\right]}{\left[ CH _{3} COOH \right]}$

$\therefore K_{a}=\frac{(0.1) X}{0.05}$

$x=\frac{1.82 \times 10^{-5} \times 0.05}{0.1}$

$x=1.82 \times 10^{-4} \times 0.05 \,M$

Now,  $\alpha=\frac{\text { Amount of acid dissociated }}{\text { Amount of acid taken }}$

$=\frac{1.82 \times 10^{-4} \times 0.05}{0.05}$

$=1.82 \times 10^{-4}$

Similar Questions

The first ionization constant of $H _{2} S$ is $9.1 \times 10^{-8}$. Calculate the concentration of $HS ^{-}$ ion in its $0.1 \,M$ solution. How will this concentration be affected if the solution is $0.1\, M$ in $HCl$ also? If the second dissociation constant of $H _{2} S$ is $1.2 \times 10^{-13}$, calculate the concentration of $S^{2-}$ under both conditions.

Given

$(i)$ $\begin{gathered}
  HCN\left( {aq} \right) + {H_2}O\left( l \right) \rightleftharpoons {H_3}{O^ + }\left( {aq} \right) + C{N^ - }\left( {aq} \right) \hfill \\
  {K_a} = 6.2 \times {10^{ - 10}} \hfill \\ 
\end{gathered} $

$(ii)$ $\begin{gathered}
  C{N^ - }\left( {aq} \right) + {H_2}O\left( l \right) \rightleftharpoons HCN\left( {aq} \right) + O{H^ - }\left( {aq} \right) \hfill \\
  {K_b} = 1.6 \times {10^{ - 5}} \hfill \\ 
\end{gathered} $

These equilibria show the following order of the relative base strength

  • [AIEEE 2012]

$p{K_a}$ value for acetic acid at the experimental temperature is $5$. The percentage hydrolysis of $0.1\,\,M$ sodium acetate solution will be

Which oxychloride has maximum $pH$

Calculate $pH$ of $0.02$ $mL$ $ClC{H_2}COOH$. Its ${K_a} = 1.36 \times {10^{ - 3}}$ calculate its $pK_{b}$,