Calculate the degree of ionization of $0.05 \,M$ acetic acid if its $p K_{ a }$ value is $4.74$ 

How is the degree of dissociation affected when its solution also contains $(a)$ $0.01 \,M$ $(b)$ $0.1 \,M$ in $HCl$ ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$c=0.05 \,M$

$p K_{a}=4.74$

$p K_{a}=-\log \left(K_{a}\right)$

$K_{a}=1.82 \times 10^{-5}$

$K_{a}=c \alpha^{2}$ $\alpha=\sqrt{\frac{K_{a}}{c}}$

$\alpha=\sqrt{\frac{1.82 \times 10^{-5}}{5 \times 10^{-2}}}=1.908 \times 10^{-2}$

When $HCI$ is added to the solution, the concentration of $H ^{+}$ ions will increase. Therefore, the equilibrium will shift in the backward direction i.e., dissociation of acetic acid will decrease.

Case $I:$ When $0.01 \,M$ $HCl$ is taken.

Let $x$ be the amount of acetic acid dissociated after the addition of $HCl$.

                                    $C{H_3}COOH\quad  \leftrightarrow \quad {H^ + }\quad  + \quad C{H_3}CO{O^ - }$

Initial conc.                      $0.05\,M$                          $0$                       $0$

After dissociation           $0.05-x$                     $0.01+x$          $x$

As the dissociation of a very small amount of acetic acid will take place, the values i.e., $0.05-x$ and $0.01+x$ can be taken as $0.05$ and $0.01$ respectively.

$K_{a}=\frac{\left[ CH _{3} COO ^{-}\right]\left[ H ^{+}\right]}{\left[ CH _{3} COOH \right]}$

$\therefore K_{a}=\frac{(0.01) x}{0.05}$

$x=\frac{1.82 \times 10^{-5} \times 0.05}{0.01}$

$x=1.82 \times 10^{-3} \times 0.05 \,M$

Now, $\alpha=\frac{\text { Amount of acid dissociated }}{\text { Amount of acid taken }}$

$=\frac{1.82 \times 10^{-3} \times 0.05}{0.05}$

$=1.82 \times 10^{-3}$

Case $II:$ When $0.1 \,M$ $HCl$ is taken.

Let the amount of acetic acid dissociated in this case be $X$. As we have done in the first case, the concentrations of various species involved in the reaction are:

$\left[ CH _{3} COOH \right]=0.05-X ; 0.05\, M$

$\left[ CH _{3} COO ^{-}\right]=X$

$\left[ H ^{+}\right]=0.1+X ; 0.1 \,M$

$K_{a}=\frac{\left[ CH _{3} COO ^{-}\right]\left[ H ^{+}\right]}{\left[ CH _{3} COOH \right]}$

$\therefore K_{a}=\frac{(0.1) X}{0.05}$

$x=\frac{1.82 \times 10^{-5} \times 0.05}{0.1}$

$x=1.82 \times 10^{-4} \times 0.05 \,M$

Now,  $\alpha=\frac{\text { Amount of acid dissociated }}{\text { Amount of acid taken }}$

$=\frac{1.82 \times 10^{-4} \times 0.05}{0.05}$

$=1.82 \times 10^{-4}$

Similar Questions

Concentration $C{N^ - }$ in $0.1\,M\,HCN$ is $[{K_a} = 4 \times {10^{ - 10}}]$

What is the percent ionization $(\alpha)$ of a $0.01\, M\, HA$ solution ? .......$\%$ $(K_a = 10^{-6})$

The $pH$ of two equimolar weak acids are $3.0$ and $5.0$ respectively. Their relative strength is

$HClO$ is a weak acid. The concentration of ${H^ + }$ ions in $0.1\,M$ solution of $HClO\,({K_a} = 5 \times {10^{ - 8}})$ will be equal to

What is the $ pH$  of $0.01\, M$  glycine solution? For glycine, $K{a_1} = 4.5 \times {10^{ - 3}}$ and $K{a_2} = 1.7 \times {10^{ - 10}}$ at  $298 \,K$

  • [AIIMS 2004]