The degree of dissociation of $0.1\,M\,HCN$ solution is $0.01\%$ . Its ionisation constant would be
${10^{ - 3}}$
${10^{ - 5}}$
${10^{ - 7}}$
${10^{ - 9}}$
If the $pKa$ of lactic acid is $5$,then the $pH$ of $0.005$ $M$ calcium lactate solution at $25^{\circ}\,C$ is $........\times 10^{-1}$ (Nearest integer)
The ionization constant of acetic acid is $1.74 \times 10^{-5}$. Calculate the degree of dissociation of acetic acid in its $0.05\, M$ solution. Calculate the concentration of acetate ion in the solution and its $pH$.
Given the two concentration of $HCN (K_a = 10^{-9})$ are $0.1\,M$ and $0.001\,M$ respectively. What will be the ratio of degree of dissociation ?
Calculate $pH$ of $0.02$ $mL$ $ClC{H_2}COOH$. Its ${K_a} = 1.36 \times {10^{ - 3}}$ calculate its $pK_{b}$,
Sulphurous acid $\left( H _{2} SO _{3}\right)$ has $Ka _{1}=1.7 \times 10^{-2}$ and $Ka _{2}=6.4 \times 10^{-8} .$ The $pH$ of $0.588 \,M\, H _{2} SO _{3}$ is ..... . (Round off to the Nearest Integer)