Calculate the time (in $minutes$) interval between $33 \,\%$ decay and $67\, \%$ decay if half-life of a substance is $20\, minutes.$
$60$
$20$
$40$
$13$
Some nuclei of a radioactive material are undergoing radioactive decay. The time gap between the instances when a quarter of the nuclei have decayed and when half of the nuclei have decayed is given as:
(where $\lambda$ is the decay constant)
According to classical physics, $10^{-15}\ m$ is distance of closest approach $(d_c)$ for fusion to occur between two protons. A more accurate and quantum approach says that ${d_c} = \frac{{{\lambda _p}}}{{\sqrt 2 }}$ where $'\lambda _p'$ is de-broglie's wavelength of proton when they were far apart. Using quantum approach, find equation of temperature at centre of star. [Given: $M_p$ is mass of proton, $k$ is boltzman constant]
Define the average life of a radioactive substance.
Deuteron is a bound state of a neutron and a proton with a binding energy $B = 2.2\, MeV$. A $\gamma $ -ray of energy $E$ is aimed at a deuteron nucleus to try to break it into a (neutron + proton) such that the $n$ and $p$ move in the direction of the incident $\gamma $ -ray. If $E = B$, show that this cannot happen. Hence calculate how much bigger than $B$ must $E$ be for such a process to happen.
A radioactive element ${ }_{92}^{242} X$ emits two $\alpha$-particles, one electron and two positrons. The product nucleus is represented by ${ }_{ P }^{234} Y$. The value of $P$ is $..................$