13.Nuclei
medium

Half-lives of two radioactive elements $A$ and $B$ are $20$ minutes and $40$ minutes, respectively. Initially, the samples have equal number of nuclei. After $80$ minutes, the ratio of decayed number of $A$ and $B$ nuclei will be

A

$1 : 4$

B

$5 : 4$

C

$1 : 16$

D

$4 : 1$

(JEE MAIN-2016)

Solution

For $A_{t / 2}=20\, min$, $t=80\,min$, number of half lifes $n=4$

$\therefore $ Nuclei remaining $=\frac{\mathrm{N}_{\mathrm{o}}}{2^{4}} .$ Therefore nuclei decayed $=\mathrm{N}_{0}-\frac{\mathrm{N}_{0}}{2^{4}}$

For $\mathrm{B}_{\mathrm{t} / 2}=40 \mathrm{min} ., \mathrm{t}=80 \mathrm{min},$ number of half lifes $\mathrm{n}=2$

$\therefore $ Nuclei remaining $=\frac{\mathrm{N}_{\mathrm{o}}}{2^{2}} .$ Therefore nuclei decayed $=\mathrm{N}_{0}-\frac{\mathrm{N}_{\mathrm{o}}}{2^{2}}$

$\therefore$ Required ratio$ = \frac{{{\text{No}} – \frac{{{\text{No}}}}{{{2^4}}}}}{{{\text{No}} – \frac{{{\text{No}}}}{{{2^2}}}}} = $ $\frac{{1 – \frac{1}{{16}}}}{{1 – \frac{1}{4}}} = \frac{{15}}{{16}} \times \frac{4}{3} = \frac{5}{4}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.