$R$ त्रिज्या के पतले अर्द्धवलय पर $q$ आवेश एकसमान रूप से वितरित है। वलय के केन्द्र पर विद्युत क्षेत्र है
$\frac{q}{{2{\pi ^2}{\varepsilon _0}{R^2}}}$
$\frac{q}{{4{\pi ^2}{\varepsilon _0}{R^2}}}$
$\frac{q}{{4\pi {\varepsilon _0}{R^2}}}$
$\frac{q}{{2\pi {\varepsilon _0}{R^2}}}$
दो समान आवेश एक दूसरे से $d$ दूरी पर रखे हैं। $x$ दूरी पर इसके लम्ब अर्धक पर रखा तीसरा आवेश अधिकतम बल अनुभव करेगा यदि
$a$ तथा $b$ त्रिज्या के दो गोले आवेशित करने के पश्चात एक तार के द्वारा जोड़ दिये जाते हैं। गोलों की विद्युत क्षेत्र की तीव्रताओं का अनुपात होगा
एक धातु के खोखले गोले को जिसकी त्रिज्या $5$ सेमी है, इतना आवेशित किया जाता है कि उसकी सतह पर $10\,V$ विभव आ जाता है। गोले के केन्द्र से $2$ सेमी की दूरी पर विभव .......$V$ होगा
ऊष्मा संचालन की स्थायी अवस्था (steady state) में, ऊष्मा धारा $\vec{\jmath}(\vec{r})$ (प्रति क्षेत्रफल से प्रति सेकंड प्रवाहित होने वाली ऊष्मा) तथा तापमान $T(\vec{r})$ को किसी स्थान पर निर्धारित करने वाला समीकरण, विद्युत क्षेत्र $\vec{E}(\vec{r})$ तथा स्थिर वैद्युत विभव $V(\vec{r})$ को निर्धारित करने वाले समीकरण के जैसा ही दिखता है। इन चरों की आपस में तुल्यता नीचे सारणी में दर्शाई गई है।
ऊष्मा संचरण | स्थिर वैद्युत |
$T( r )$ | $V( r )$ |
$j ( r )$ | $E ( r )$ |
इस तुल्यता की सहायता से समान ताप पर रखे गए किन्तु भिन्न भिन्न त्रिज्याओं के गोलों की सतह से प्रवाहित होने वाली कुल ऊष्मा की दर $\dot{Q}$ का अनुमान लगाया जाता है। यदि $\dot{Q} \propto R^n$, जहां $R$ त्रिज्या है, तो $n$ का मान होगा
एक आवेश $Q$ को दो भागों में $q$ और $Q - q$ में विभाजित किया जाता है। अलग करने पर दोनों आवेशों के बीच का कूलॉम बल अधिकतम तब होगा जब अनुपात $Q/q$ का मान होगा