एक कण त्वरक (Particle accelerator) में, प्रोटॉन पुंज की $500 \,\mu A$ की विद्युत धारा प्रवाहित हो रही है। इस पुंज में प्रत्येक प्रोटान की चाल $3 \times 10^7 \,m / s$ है। पुंज के अनुप्रस्थ काट का क्षेत्रफल $1.50 \,mm ^2$ है। इस पुंज में आवेश का घनत्व $Coulomb/m$ मात्रक में लगभग होगा।

  • [KVPY 2018]
  • A

    $10^{-8}$

  • B

    $10^{-7}$

  • C

    $10^{-6}$

  • D

    $10^{-5}$

Similar Questions

$r$ तथा $R$ त्रिज्या $( > r)$ के दो संकेन्द्रीय एवं खोखले गोलों पर आवेश $Q$ इस प्रकार से वितरित है कि इनके पृष्ठीय आवेश घनत्व समान हैं। इनके उभयनिष्ठ केन्द्र पर विभव होगा

दो समान आवेश एक दूसरे से $d$ दूरी पर रखे हैं। $x$ दूरी पर इसके लम्ब अर्धक पर रखा तीसरा आवेश अधिकतम बल अनुभव करेगा यदि

एक प्रतिरोथक $R$ से धारिता $C$ का एक संधारित्र विसर्जित हो रहा है। यह मान लें कि संधारित्र से संभारित ऊर्जा को अपने प्रारंभिक मान से घटकर आधा रह जाने में $t_{1}$ समय लगता है और आवेश को अपने प्रारम्भिक मान से घटकर एक-चोथाई रह जाने में $t_{2}$ समय लगता है। तब अनुपात $t_{1} / t_{2}$ होगा

ऊष्मा संचालन की स्थायी अवस्था (steady state) में, ऊष्मा धारा $\vec{\jmath}(\vec{r})$ (प्रति क्षेत्रफल से प्रति सेकंड प्रवाहित होने वाली ऊष्मा) तथा तापमान $T(\vec{r})$ को किसी स्थान पर निर्धारित करने वाला समीकरण, विद्युत क्षेत्र $\vec{E}(\vec{r})$ तथा स्थिर वैद्युत विभव $V(\vec{r})$ को निर्धारित करने वाले समीकरण के जैसा ही दिखता है। इन चरों की आपस में तुल्यता नीचे सारणी में दर्शाई गई है।

ऊष्मा संचरण स्थिर वैद्युत
$T( r )$ $V( r )$
$j ( r )$ $E ( r )$

इस तुल्यता की सहायता से समान ताप पर रखे गए किन्तु भिन्न भिन्न त्रिज्याओं के गोलों की सतह से प्रवाहित होने वाली कुल ऊष्मा की दर $\dot{Q}$ का अनुमान लगाया जाता है। यदि $\dot{Q} \propto R^n$, जहां $R$ त्रिज्या है, तो $n$ का मान होगा

  • [KVPY 2018]

यदि एक समबाहु त्रिभुज के तीनों शीर्ष पर $2q,\, - q,\, - q$ आवेश क्रमश: स्थित हैं, तो त्रिभुज के केन्द्र पर