- Home
- Standard 11
- Physics
સાચો વિકલ્પ પસંદ કરો :
$(a)$ ઊંચાઈ વધતાં ગુરુત્વપ્રવેગ વધે છે ઘટે છે.
$(b)$ ઊંડાઈ વધતાં ગુરુત્વપ્રવેગ વધે છે ઘટે છે. (પૃથ્વીને નિયમિત ઘનતાનો ગોળો ગણો.)
$(c)$ ગુરુત્વપ્રવેગ પૃથ્વીના દળ પદાર્થના દળથી સ્વતંત્ર છે.
$(d)$ પૃથ્વીના કેન્દ્રથી $r_{1}$ અને $r_{2}$ અંતરે આવેલાં બે બિંદુઓએ સ્થિતિઊર્જાના તફાવત માટે $-G M m\left(1 / r_{2}-1 / r_{1}\right)$ સૂત્ર $m g\left(r_{2}-r_{1}\right)$ સૂત્ર કરતાં વધુ ઓછું ચોકસાઈભર્યું છે.
Solution
$(a)$ Decreases, $(b)$ Decreases, $(c)$ Mass of the body, $(d)$ More
Acceleration due to gravity at depth $h$ is given by the relation:
$g _{h}=\left(1-\frac{2 h}{R_{ c }}\right) g$
Where,
$R_{e}=$ Radius of the Earth $g =$ Acceleration due to gravity
on the surface of the Earth
It is clear from the given relation that acceleration due to gravity decreases with an increase in height.
Acceleration due to gravity at depth $d$ is given by the relation:
$g _{d}=\left(1-\frac{d}{R_{e}}\right) g$
It is clear from the given relation that acceleration due to gravity decreases with an increase in depth.
Acceleration due to gravity of body of mass $m$ is given by the relation:
$g =\frac{ G M}{R^{2}}$
Where,
$G =$ Universal gravitational constant
$M=$ Mass of the Earth
$R=$ Radius of the Earth
Hence, it can be inferred that acceleration due to gravity is independent of the mass of the body.
Gravitational potential energy of two points $r_{2}$ and $r_{1}$ distance away from the centre of the Earth is respectively given by:
$V\left(r_{1}\right)=-\frac{ G m M}{r_{1}}$
$V\left(r_{2}\right)=-\frac{G m M}{r_{2}}$
Difference in potential energy, $V=V\left(r_{2}\right)-V\left(r_{1}\right)=-\operatorname{GmM}\left(\frac{1}{r_{2}}-\frac{1}{r_{1}}\right)$
Hence, this formula is more accurate than the formula $m g\left(r_{2}-r_{1}\right)$