Choose the incorrect statement :
$(a)$ The electric lines of force entering into a Gaussian surface provide negative flux.
$(b)$ A charge ' $q$ ' is placed at the centre of a cube. The flux through all the faces will be the same.
$(c)$ In a uniform electric field net flux through a closed Gaussian surface containing no net charge, is zero.
$(d)$ When electric field is parallel to a Gaussian surface, it provides a finite non-zero flux.
Choose the most appropriate answer from the options given below
$(c)$ and $(d)$ only
$(b)$ and $(d)$ only
$(d)$ only
$(a)$ and $(c)$ only
Write $SI$ unit of electric flux.
The figure shows the electric field lines of three charges with charge $+1, +1$, and $-1$. The Gaussian surface in the figure is a sphere containing two of the charges. The total electric flux through the spherical Gaussian surface is
Gauss’s law states that
The total charge enclosed in an incremental volume of $2 \times 10^{-9} \,{m}^{3}$ located at the origin is ...... $nC,$ if electric flux density of its field is found as $D=e^{-x} \sin y \hat{i}-e^{-x} \cos y \hat{j}+2 z \hat{k}\, C / m^{2}$
When electric flux is said to be positive, negative or zero ?