Gujarati
10-1.Circle and System of Circles
normal

Circles ${x^2} + {y^2} + 2gx + 2fy = 0$ and ${x^2} + {y^2}$ $ + 2g'x + 2f'y = $ $0$ touch externally, if

A

$f'g = g'f$

B

$fg = f'g'$

C

$f'g' + fg = 0$

D

$f'g + g'f = 0$

Solution

(a) According to the figure, $OA + O'A = OO'$

$\sqrt {{g^2} + {f^2}} + \sqrt {f{'^2} + g{'^2}} $

$= \sqrt {{{(g' – g)}^2} + {{(f' – f)}^2}} $

$ \Rightarrow {g^2} + {f^2} + f{'^2} + g{'^2} + 2\sqrt {{g^2} + {f^2}} \times \sqrt {f{'^2} + g{'^2}} $

$ = {(g' – g)^2} + {(f' – f)^2}$

$ \Rightarrow 2\sqrt {{g^2} + {f^2}} \sqrt {f{'^2} + g{'^2}} = – 2(gg' + ff')$

$ \Rightarrow {g^2}f{'^2} + {f^2}g{'^2} = 2gg'ff'$.

$\therefore {(gf' – fg')^2} = 0$

$\Rightarrow gf' = fg'$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.