वृत्त ${x^2} + {y^2} + 2gx + 2fy = 0$ तथा ${x^2} + {y^2} + 2g'x + 2f'y = 0$ बाह्यत: स्पर्श करते हैं यदि
$f'g = g'f$
$fg = f'g'$
$f'g' + fg = 0$
$f'g + g'f = 0$
उस वृत्त का समीकरण, जो बिन्दु $(2a,\,0)$ से गुजरता है एवं जिसका वृत्त ${x^2} + {y^2} = {a^2}$ के सापेक्ष मूलाक्ष $x = \frac{a}{2}$ है, होगा
वृत्त ${(x - 3)^2} + {(y - 4)^2} = {r^2}$ पूर्णत: वृत्त ${x^2} + {y^2} = {R^2}$ के भीतर है। यदि
उस वृत्त का समीकरण जो मूल बिन्दु से जाता है एवं वृत्त ${x^2} + {y^2} = {a^2}$ व ${x^2} + {y^2} + 2ax = 2{a^2}$ के समाक्ष है, होगा
यदि एक चर रेखा $3 x+4 y-\lambda=0$ इस प्रकार है कि दो वृत्त $x ^{2}+ y ^{2}-2 x -2 y +1=0$ तथा $x ^{2}+ y ^{2}-18 x -2 y +78=0$ इसके दोनों ओर (opposite sides) हैं, तो $\lambda$ के सभी मानों का समुच्चय निम्न में से कौनसा अन्तराल है