Gujarati
10-1.Circle and System of Circles
medium

If the two circles $2{x^2} + 2{y^2} - 3x + 6y + k = 0$ and ${x^2} + {y^2} - 4x + 10y + 16 = 0$ cut orthogonally, then the value of $k$ is

A

$41$

B

$14$

C

$4$

D

$0$

Solution

(c) Given circles are

$2{x^2} + 2{y^2} – 3x + 6y + k = 0$

or ${x^2} + {y^2} – \frac{3}{2}x + 3y + \frac{k}{2} = 0$ …..$(i)$

and ${x^2} + {y^2} – 4x + 10y + 16 = 0$ …..$(ii)$

Circle $(i)$ and $(ii)$ cut orthogonally,

then $2{g_1}\,{g_2} + 2{f_1}{f_2} = {c_1} + {c_2}$

$2{\rm{ }}\left( { – \frac{3}{4}} \right)\,( – 2) + 2{\rm{ }}\left( {\frac{3}{2}} \right)\,.\,5 = \frac{k}{2} + 16$

$3 + 15 = \frac{k}{2} + 16$

==> $18 = \frac{k}{2} + 16$

==> $k = 4.$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.