If the two circles $2{x^2} + 2{y^2} - 3x + 6y + k = 0$ and ${x^2} + {y^2} - 4x + 10y + 16 = 0$ cut orthogonally, then the value of $k$ is

  • A

    $41$

  • B

    $14$

  • C

    $4$

  • D

    $0$

Similar Questions

If $d$ is the distance between the centres of two circles, ${r_1},{r_2}$ are their radii and $d = {r_1} + {r_2}$, then

The circles $x^2 + y^2 + 2x -2y + 1 = 0$ and $x^2 + y^2 -2x -2y + 1 = 0$ touch each  other :-

The equation of the circle which intersects circles ${x^2} + {y^2} + x + 2y + 3 = 0$, ${x^2} + {y^2} + 2x + 4y + 5 = 0$and ${x^2} + {y^2} - 7x - 8y - 9 = 0$ at right angle, will be

The intercept on the line $y = x$ by the circle ${x^2} + {y^2} - 2x = 0$ is $AB$ . Equation of the circle with $AB$ as a diameter is

  • [IIT 1996]

Let $C_1, C_2$ be two circles touching each other externally at the point $A$ and let $A B$ be the diameter of circle $C_1$. Draw a secant $B A_3$ to circle $C_2$, intersecting circle $C_1$ at a point $A_1(\neq A)$, and circle $C_2$ at points $A_2$ and $A_3$. If $B A_1=2, B A_2=3$ and $B A_3=4$, then the radii of circles $C_1$ and $C_2$ are respectively

  • [KVPY 2017]