7.Binomial Theorem
normal

$n\left[ {x - \left( {\frac{{^n{C_0}{ + ^n}{C_1}}}{{^n{C_0}}}} \right)} \right]\left[ {\frac{x}{2} - \left( {\frac{{^n{C_1}{ + ^n}{C_2}}}{{^n{C_1}}}} \right)} \right]\left[ {\frac{x}{3} - \left( {\frac{{^n{C_2}{ + ^n}{C_3}}}{{^n{C_2}}}} \right)} \right].....$ $ \left[ {\frac{x}{n} - \left( {\frac{{^n{C_{n - 1}}{ + ^n}{C_n}}}{{^n{C_{n - 1}}}}} \right)} \right]$ ના વિસ્તરણમાં $x^{n-6}$ નો સહગુણક મેળવો 

(જ્યાં $n = n . (n -1) . (n -2).... 3.2.1$)

A

$^n{C_6}{\left( {n + 1} \right)^6}$

B

$^n{C_6}.{n^6}$

C

$^n{C_6}{\left( {n + 2} \right)^6}$

D

$^n{C_5}{\left( {n + 1} \right)^5}$

Solution

$n!\left[ {x – \frac{{\left( {n + 1} \right)}}{1}} \right]\left[ {\frac{x}{2} – \frac{{\left( {n + 1} \right)}}{2}} \right]$

$\left[\frac{\mathrm{x}}{3}-\frac{(\mathrm{n}+1)}{3}\right] \ldots\left[\frac{\mathrm{x}}{\mathrm{n}}-\frac{(\mathrm{n}+1)}{\mathrm{n}}\right]=[\mathrm{x}-(\mathrm{n}+1)]^{\mathrm{n}}$

Coefficient of $x^{n-6}$ is $^{n} C_{6}(n+1)^{6}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.