$\frac{1}{1 ! 50 !}+\frac{1}{3 ! 48 !}+\frac{1}{5 ! 46 !}+\ldots .+\frac{1}{49 ! 2 !}+\frac{1}{51 ! 1 !}$ ની કિમંત મેળવો.

  • [JEE MAIN 2023]
  • A

    $\frac{2^{50}}{50 !}$

  • B

    $\frac{2^{50}}{51 !}$

  • C

    $\frac{2^{51}}{51 !}$

  • D

    $\frac{2^{51}}{50 \text { ! }}$

Similar Questions

${(1 + x)^n}$ ના વિસ્તરણમાં $x$ ની અયુગ્મ ઘાતાંકના સહગુણકનો સરવાળો મેળવો.

 જો  $(\mathrm{x}+3)^{\mathrm{n}-1}+(\mathrm{x}+3)^{\mathrm{n}-2}(\mathrm{x}+2)+ $ $ (\mathrm{x}+3)^{\mathrm{n}-3}(\mathrm{x}+2)^2+\ldots . .+(\mathrm{x}+2)^{\mathrm{n}-1}$ માં $x^r$ નો સહગુણક $\alpha_{\mathrm{r}}$ છે. જો $\sum_{\mathrm{r}-0}^{\mathrm{n}} \alpha_{\mathrm{r}}=\beta^{\mathrm{n}}-\gamma^{\mathrm{n}}, \beta, \gamma \in \mathrm{N}$, તો $\beta^2+\gamma^2=$.................. 

  • [JEE MAIN 2024]

${n^n}{\left( {\frac{{n + 1}}{2}} \right)^{2n}}$ = . . .

જો $\left(2 x ^{2}+3 x +4\right)^{10}=\sum \limits_{ r =0}^{20} a _{ r } x ^{ r } \cdot$ હોય તો $\frac{ a _{7}}{ a _{13}}$ ની કિમત શોધો 

  • [JEE MAIN 2020]

વિધાન $1$: $\mathop \sum \limits_{r = 0}^n \left( {r + 1} \right)\left( {\begin{array}{*{20}{c}}n\\r\end{array}} \right) = \left( {n + 2} \right){2^{n - 1}}$

વિધાન $2$:$\;\mathop \sum \limits_{r = 0}^n \left( {r + 1} \right)\left( {\begin{array}{*{20}{c}}n\\r\end{array}} \right){x^r}\; = {\left( {1 + x} \right)^n} + nx{\left( {1 + x} \right)^{n - 1}}$

  • [AIEEE 2008]