$(x^2 - x + 1)^{10} (x^2 + 1 )^{15}$ ના વિસ્તરણમાં $x^3$ નો સહગુણક મેળવો
$-360$
$-240$
$-180$
$60$
${(x + a)^n}$ ના વિસ્તરણમાં ${x^{n - r}}{a^r}$ અને ${x^r}{a^{n - r}}$ પદોના સહગુણકનો ગુણોતર મેળવો.
જો ${\left( {{x^2} + \frac{1}{x}} \right)^n}$ ના વિસ્તરણમાં મધ્યમપદ $924{x^6}$ હોય તો $n = $
જો $a^3 + b^6 = 2$, હોય તો $(ax^{\frac{1}{3}}+bx^{\frac{-1}{6}})^9$ ના વિસ્તરણમાં અચળ પદ મેળવો જ્યાં $(a > 0, b > 0)$
જો $\left( ax ^2+\frac{1}{2 bx }\right)^{11}$ ના વિસ્તરણમાં $x^7$ નો સહગુણક અને $\left(a x-\frac{1}{3 b x^2}\right)^{11}$ ના વિસ્તરણમાં $x ^{-7}$ નો સહગુણક સમાન હોય તો . . ..
${\left( {{x^5} + {{4.3}^{ - {{\log }_{\sqrt 3 }}\sqrt {{x^3}} }}} \right)^{10}}$ ના વિસ્તરણમાં $x^2$ અને $x^{10}$ ના સહગુણકનો ગુણોત્તર મેળવો