જો $\left( ax ^2+\frac{1}{2 bx }\right)^{11}$ ના વિસ્તરણમાં $x^7$ નો સહગુણક અને $\left(a x-\frac{1}{3 b x^2}\right)^{11}$ ના વિસ્તરણમાં $x ^{-7}$ નો સહગુણક સમાન હોય તો . . ..
$64 ab =243$
$729 ab =32$
$243 ab =64$
$32 ab =729$
ધારો કે $\left(2 x^{\frac{1}{5}}-\frac{1}{x^{\frac{1}{5}}}\right)^{15}, x>0$ નાં વિસ્તરણમાં $x^{-1}$ અને $x^{-3}$ નાં સહગુણકો અનુક્રમે $m$ અને $n$ છ. જો $r$ એવી ધનપૂણાક સંખ્યા હોય કે જેથી $m n^{2}={ }^{15} C_{r} \cdot 2^{r}$, તો $r$ ની કિંમત $\dots\dots\dots$ છે.
${\left( {\frac{{{x^3}}}{3} + \frac{3}{x}} \right)^8}$ ના વિસ્તરણમાં મધ્યમ પદ $5670$ થાય તે માટે $x$ ની વાસ્તવિક કિમતોનો સરવાળો કેટલો થાય ?
જો $\left(\sqrt{\frac{1}{x^{1+\log _{10} x}}}+x^{\frac{1}{12}}\right)^{6}$ ના વિસ્તરણમાં ચોથું પદ $200$ અને $x > 1$ હોય તો $x$ ની કિમત મેળવો.
${\left( {1 - \frac{1}{x}} \right)^n}\left( {1 - {x}} \right)^n$ ના વિસ્તરણમાં મધ્યમ પદ મેળવો.
${(1 + x)^n}{\left( {1 + \frac{1}{x}} \right)^n}$ ના વિસ્તરણમાં અચળપદ મેળવો.