Coefficient of $x^{64}$ in the expansion of $(x - 1)^2(x - 2)^3(x - 3)^4(x - 4)^5 .... (x - 10)^{11}$
$-220$
$-440$
$-215$
$-430$
If $a_r$ is the coefficient of $x^{10-r}$ in the Binomial expansion of $(1+x)^{10}$, then $\sum \limits_{r=1}^{10} r^3\left(\frac{a_r}{a_{r-1}}\right)^2$ is equal to
The sum of all the coefficients in the binomial expansion of ${({x^2} + x - 3)^{319}}$ is
If $\sum\limits_{r = 0}^{25} {\left\{ {^{50}{C_r}.{\,^{50 - r}}{C_{25 - r}}} \right\} = K\left( {^{50}{C_{25}}} \right)} $, then $K$ is equal to
If $\left({ }^{30} C _1\right)^2+2\left({ }^{30} C _2\right)^2+3\left({ }^{30} C _3\right)^2+\ldots \ldots+30\left({ }^{30} C _{30}\right)^2=$ $\frac{\alpha 60 !}{(30 !)^2}$, then $\alpha$ is equal to
The sum of the coefficients of three consecutive terms in the binomial expansion of $(1+ x )^{ n +2}$, which are in the ratio $1: 3: 5$, is equal to