The coefficient of $x^{70}$ in $x^2(1+x)^{98}+x^3(1+x)^{97}+$ $x^4(1+x)^{96}+\ldots \ldots . .+x^{54}(1+x)^{46}$ is ${ }^{99} \mathrm{C}_p-{ }^{46} \mathrm{C}_{\mathrm{q}}$.
Then a possible value to $\mathrm{p}+\mathrm{q}$ is :
$55$
$61$
$68$
$83$
Let $\alpha=\sum_{\mathrm{r}=0}^{\mathrm{n}}\left(4 \mathrm{r}^2+2 \mathrm{r}+1\right)^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}$ and $\beta=\left(\sum_{\mathrm{r}=0}^{\mathrm{n}} \frac{{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}}{\mathrm{r}+1}\right)+\frac{1}{\mathrm{n}+1}$. If $140<\frac{2 \alpha}{\beta}<281$ then the value of $n$ is...............
What is the sum of the coefficients of ${({x^2} - x - 1)^{99}}$
If $\frac{{ }^{11} C_1}{2}+\frac{{ }^{11} C_2}{3}+\ldots . .+\frac{{ }^{11} C_9}{10}=\frac{n}{m}$ with $\operatorname{gcd}(n, m)=1$, then $n+m$ is equal to
Let $a =$ Minimum $\{x^2 + 2x + 3, x \in R\}$ and $b = \mathop {\lim }\limits_{\theta \to 0} \frac{{1 - \cos \theta }}{{{\theta ^2}}}$ The value of $\sum\limits_{r = 0}^n {{a^r}.{b^{n - r}}} $ is
If $^{20}{C_1} + \left( {{2^2}} \right){\,^{20}}{C_3} + \left( {{3^2}} \right){\,^{20}}{C_3} + \left( {{2^2}} \right) + ..... + \left( {{{20}^2}} \right){\,^{20}}{C_{20}} = A\left( {{2^\beta }} \right)$, then the ordered pair $(A, \beta )$ is equal to