If $\mathrm{b}$ is very small as compared to the value of $\mathrm{a}$, so that the cube and other higher powers of $\frac{b}{a}$ can be neglected in the identity $\frac{1}{a-b}+\frac{1}{a-2 b}+\frac{1}{a-3 b} \ldots .+\frac{1}{a-n b}=\alpha n+\beta n^{2}+\gamma n^{3}$, then the value of $\gamma$ is:
$\frac{b^{2}}{3 a^{3}}$
$\frac{a+b}{3 a^{2}}$
$\frac{a^{2}+b}{3 a^{3}}$
$\frac{a+b^{2}}{3 a^{3}}$
If $1+\left(2+{ }^{49} C _{1}+{ }^{49} C _{2}+\ldots .+{ }^{49} C _{49}\right)\left({ }^{50} C _{2}+{ }^{50} C _{4}+\right.$ $\ldots . .+{ }^{50} C _{ so }$ ) is equal to $2^{ n } . m$, where $m$ is odd, then $n$ $+m$ is equal to.
If the sum of the coefficients in the expansion of ${({\alpha ^2}{x^2} - 2\alpha {\rm{ }}x + 1)^{51}}$ vanishes, then the value of $\alpha $ is
Let $(1+2 x)^{20}=a_0+a_1 x+a_2 x^2+\ldots+a_{20} x^{20}$.Then $3 a_0+2 a_1+3 a_2+2 a_3+3 a_4+2 a_5+\ldots+2 a_{19}+3 a_{20}$ equals
If the sum of the coefficients in the expansion of ${(x - 2y + 3z)^n}$ is $128$ then the greatest coefficient in the expansion of ${(1 + x)^n}$ is
The sum of the coefficients in the expansion of ${(1 + x - 3{x^2})^{2163}}$ will be