3 and 4 .Determinants and Matrices
easy

निम्नलिखित को परिकलित कीजिए

:$\left[ {\begin{array}{*{20}{l}}
  {{a^2} + {b^2}}&{{b^2} + {c^2}} \\ 
  {{a^2} + {c^2}}&{{a^2} + {b^2}} 
\end{array}} \right]$ $ + \left[ {\begin{array}{*{20}{c}}
  {2ab}&{2bc} \\ 
  { - 2ac}&{ - 2ab} 
\end{array}} \right]$

A

$\left[ {\begin{array}{*{20}{l}}
  {{{(a + b)}^2}}&{{{(b + c)}^2}} \\ 
  {{{(a - c)}^2}}&{{{(a - b)}^2}} 
\end{array}} \right]$

B

$\left[ {\begin{array}{*{20}{l}}
  {{{(a + b)}^2}}&{{{(b + c)}^2}} \\ 
  {{{(a - c)}^2}}&{{{(a - b)}^2}} 
\end{array}} \right]$

C

$\left[ {\begin{array}{*{20}{l}}
  {{{(a + b)}^2}}&{{{(b + c)}^2}} \\ 
  {{{(a - c)}^2}}&{{{(a - b)}^2}} 
\end{array}} \right]$

D

$\left[ {\begin{array}{*{20}{l}}
  {{{(a + b)}^2}}&{{{(b + c)}^2}} \\ 
  {{{(a - c)}^2}}&{{{(a - b)}^2}} 
\end{array}} \right]$

Solution

$\left[ {\begin{array}{*{20}{l}}
  {{a^2} + {b^2}}&{{b^2} + {c^2}} \\ 
  {{a^2} + {c^2}}&{{a^2} + {b^2}} 
\end{array}} \right]$ $ + \left[ {\begin{array}{*{20}{c}}
  {2ab}&{2bc} \\ 
  { – 2ac}&{ – 2ab} 
\end{array}} \right]$

$ = \left[ {\begin{array}{*{20}{l}}
  {{a^2} + {b^2} + 2ab}&{{b^2} + {c^2} + 2bc} \\ 
  {{a^2} + {c^2} – 2ac}&{{a^2} + {b^2} – 2ab} 
\end{array}} \right]$

$ = \left[ {\begin{array}{*{20}{l}}
  {{{(a + b)}^2}}&{{{(b + c)}^2}} \\ 
  {{{(a – c)}^2}}&{{{(a – b)}^2}} 
\end{array}} \right]$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.