Consider a Disc of mass $5 \mathrm{~kg}$, radius $2 \mathrm{~m}$, rotating with angular velocity of $10 \mathrm{rad} / \mathrm{s}$ about an axis perpendicular to the plane of rotation. An identical disc is kept gently over the rotating disc along the same axis. The energy dissipated so that both the discs continue to rotate together without slipping is ___________$J$.
$349$
$248$
$78$
$250$
Write the formula of work done by torque in rotational rigid body about a the fixed axis.
A thin and uniform rod of mass $M$ and length $L$ is held vertical on a floor with large friction. The rod is released from rest so that it falls by rotating about its contact-point with the floor without slipping. Which of the following statement($s$) is/are correct, when the rod makes an angle $60^{\circ}$ with vertical ? [ $g$ is the acceleration due to gravity]
$(1)$ The radial acceleration of the rod's center of mass will be $\frac{3 g }{4}$
$(2)$ The angular acceleration of the rod will be $\frac{2 g }{ L }$
$(3)$ The angular speed of the rod will be $\sqrt{\frac{3 g}{2 L}}$
$(4)$ The normal reaction force from the floor on the rod will be $\frac{ Mg }{16}$
Three particles are situated on a light and rigid rod along $Y$axis as shown in the figure. If the system is rotating with an angular velocity of $2\,rad/\sec $about $X$axis, then the total kinetic energy of the system is ...... $J$
Write the formula for power in the motion of a rigid body.
Four point masses are fastened to the corners of $a$ frame of negligible mass lying in the $xy$ plane. Let $w$ be the angular speed of rotation. Then