Consider a three-digit number with the following properties:
$I$. If its digits in units place and tens place are interchanged, the number increases by $36$ ;
$II.$ If its digits in units place and hundreds place are interchanged, the number decreases by $198 .$
Now, suppose that the digits in tens place and hundreds place are interchanged. Then, the number
increases by $180$
decreases by $270$
increases by $360$
decreases by $540$
Let $\mathrm{S}=\left\{x \in R:(\sqrt{3}+\sqrt{2})^x+(\sqrt{3}-\sqrt{2})^x=10\right\}$. Then the number of elements in $\mathrm{S}$ is :
Let $t$ be real number such that $t^2=a t+b$ for some positive integers $a$ and $b$. Then, for any choice of positive integers $a$ and $b, t^3$ is never equal to
If $3$ distinct real number $a$,$b$,$c$ satisfy $a^2(a + p) = b^2 (b + p) = c^2 (c + p)$ where $p \in R$, then value of $bc + ca + ab$ is
A man standing on a railway platform noticed that a train took $21\, s$ to cross the platform (this means the time elapsed from the moment the engine enters the platform till the last compartment leaves the platform) which is $88\,m$ long, and that it took $9 s$ to pass him. Assuming that the train was moving with uniform speed, what is the length of the train in meters?
The number of solution$(s)$ of the equation $ln(lnx)$ = $log_xe$ is -