Consider a three-digit number with the following properties:

$I$. If its digits in units place and tens place are interchanged, the number increases by $36$ ;

$II.$ If its digits in units place and hundreds place are interchanged, the number decreases by $198 .$

Now, suppose that the digits in tens place and hundreds place are interchanged. Then, the number

  • [KVPY 2017]
  • A

    increases by $180$

  • B

    decreases by $270$

  • C

    increases by $360$

  • D

    decreases by $540$

Similar Questions

If $\alpha, \beta $ and $\gamma$ are the roots of the equation $2{x^3} - 3{x^2} + 6x + 1 = 0$, then ${\alpha ^2} + {\beta ^2} + {\gamma ^2}$ is equal to

The number of solutions of $\frac{{\log 5 + \log ({x^2} + 1)}}{{\log (x - 2)}} = 2$ is

The solution set of the equation $pq{x^2} - {(p + q)^2}x + {(p + q)^2} = 0$ is

If $\alpha ,\,\beta ,\,\gamma $ are the roots of the equation ${x^3} + 4x + 1 = 0,$ then ${(\alpha + \beta )^{ - 1}} + {(\beta + \gamma )^{ - 1}} + {(\gamma + \alpha )^{ - 1}} = $

Let $S=\left\{\sin ^2 2 \theta:\left(\sin ^4 \theta+\cos ^4 \theta\right) x^2+(\sin 2 \theta) x+\right.$ $\left(\sin ^6 \theta+\cos ^6 \theta\right)=0$ has real roots $\}$. If $\alpha$ and $\beta$ be the smallest and largest elements of the set $S$, respectively, then $3\left((\alpha-2)^2+(\beta-1)^2\right)$ equals....................

  • [JEE MAIN 2024]