If $\alpha ,\beta ,\gamma $are the roots of the equation ${x^3} + x + 1 = 0$, then the value of ${\alpha ^3}{\beta ^3}{\gamma ^3}$
$0$
$-3$
$3$
$-1$
If $(x + 1)$ is a factor of ${x^4} - (p - 3){x^3} - (3p - 5){x^2}$ $ + (2p - 7)x + 6$, then $p = $
Let $p, q$ and $r$ be real numbers $(p \ne q,r \ne 0),$ such that the roots of the equation $\frac{1}{{x + p}} + \frac{1}{{x + q}} = \frac{1}{r}$ are equal in magnitude but opposite in sign, then the sum of squares of these roots is equal to .
Let $x, y, z$ be non-zero real numbers such that $\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=7$ and $\frac{y}{x}+\frac{z}{y}+\frac{x}{z}=9$, then $\frac{x^3}{y^3}+\frac{y^3}{z^3}+\frac{z^3}{x^3}-3$ is equal to
Let $r$ be a real number and $n \in N$ be such that the polynomial $2 x^2+2 x+1$ divides the polynomial $(x+1)^n-r$. Then, $(n, r)$ can be
If $\alpha , \beta$ and $\gamma$ are the roots of ${x^3} + 8 = 0$, then the equation whose roots are ${\alpha ^2},{\beta ^2}$ and ${\gamma ^2}$ is