निम्नलिखित गुणों वाली एक तीन अंकों वाली संख्या पर विचार करे :
$I$. यदि इसके इकाई $(unit)$ और दहाई $(tens)$ अंकों को आपस में बदल दिया जाए तब संख्या $36$ से बढ़ जाएगी;
$II$. यदि इसके इकाई और सीवें $(hundredth)$ अंकों को बदल दिया जाए तो संख्या $198$ से घट जाएगी;
अब मान ले कि दहाई अंक तथा सौवें अंक को आपस में अदल - बदल दिया जाए, तो संख्या
$180$ से बढ़ जाती है
$270$ से घट जाती है
$360$ से बढ़ जाती है
$540$ से घट जाती है
समीकरण $x^5\left(x^3-x^2-x+1\right)+x\left(3 x^3-4 x^2-2 x+4\right)-1$ $=0$ के भिन्न वास्तविक मूलों की संख्या है $.........$
यदि $72^x \cdot 48^y=6^{x y}$ हो, जहाँ $x$ तथा $y$ अशून्य परिमेय संख्याएँ हैं, तब $x+y$ का मान होगा
मान लें कि $x, y$ दो अंकों वाली प्राकृत संख्याएँ हैं। संख्या $x$ के अंकों को उत्क्रमित $(reverse)$ करने पर संख्या $y$ प्राप्त होती हैं। यदि प्राकृत संख्या $m$ इस प्रकार है कि $x^2-y^2=m^2$ तो $x+y+m$ का मान होगा:
एक रेलवे प्लेटफॉर्म की लंबाई $88$ मीटर है । प्लेटफॉर्म पर खड़े एक व्यक्ति ने देखा कि रेल गाड़ी को प्लेटफॉर्म को पूरी तरह पार करने में $21$ सेकंड लगे । इसका मतलब है कि इंजन के प्लेटफॉर्म पर प्रवेश करने से लेकर अंतिम डिब्बे के प्लेटफॉर्म छोड़े तक में बीता समय । उसने यह भी देखा कि रेल गाड़ी के उसे पार करने में $9$ सेकंड लगाए । यदि रेल गाड़ी एक समान गति से चल रही थी, तो रेल गाड़ी की लंबाई होगी (मीटर में)
$\lambda $ के किस मान के लिये समीकरण ${x^2} + (2 + \lambda )\,x - \frac{1}{2}(1 + \lambda ) = 0$ के मूलों के वर्गो का योग न्यूनतम होगा