If $a, b, c$ are real numbers such that $a+b+c=0$ and $a^2+b^2+c^2=1$, then $(3 a+5 b-8 c)^2+(-8 a+3 b+5 c)^2$ $+(5 a-8 b+3 c)^2$ is equal to
$49$
$98$
$147$
$294$
If $a < 0$ then the inequality $a{x^2} - 2x + 4 > 0$ has the solution represented by
The roots of the equation ${x^4} - 4{x^3} + 6{x^2} - 4x + 1 = 0$ are
Let $r_1, r_2, r_3$ be roots of equation $x^3 -2x^2 + 4x + 5074 = 0$, then the value of $(r_1 + 2)(r_2 + 2)(r_3 + 2)$ is
The locus of the point $P=(a, b)$ where $a, b$ are real numbers such that the roots of $x^3+a x^2+b x+a=0$ are in arithmetic progression is