Consider a vector $\overrightarrow F = 4\hat i - 3\hat j.$ Another vector that is perpendicular to $\overrightarrow F $ is

  • A

    $4\hat i + 3\hat j$

  • B

    $6\hat i$

  • C

    $7\hat k$

  • D

    $3\hat i - 4\hat j$

Similar Questions

Let $\overrightarrow A = \hat iA\,\cos \theta + \hat jA\,\sin \theta $ be any vector. Another vector $\overrightarrow B $ which is normal to $\overrightarrow A$ is

If for two vectors $\overrightarrow A $ and $\overrightarrow B ,\overrightarrow A \times \overrightarrow B = 0,$ the vectors

$\hat i.\left( {\hat j \times \,\,\hat k} \right) + \;\,\hat j\,.\,\left( {\hat k \times \hat i} \right) + \hat k.\left( {\hat i \times \hat j} \right)=$

Consider three vectors $A =\hat{ i }+\hat{ j }-2 \hat{ k }, B =\hat{ i }-\hat{ j }+\hat{ k }$ and $C =2 \hat{ i }-3 \hat{ j }+4 \hat{ k }$. A vector $X$ of the form $\alpha A +\beta B$ ( $\alpha$ and $\beta$ are numbers) is perpendicular to $C$.The ratio of $\alpha$ and $\beta$ is

The modulus of the vector product of two vectors is $\frac{1}{\sqrt{3}}$ times their scalar product. The angle between vectors is