Two vectors $\overrightarrow A $ and $\overrightarrow B $ are at right angles to each other, when
$\overrightarrow A + \overrightarrow B = 0$
$\overrightarrow A - \overrightarrow B = 0$
$\overrightarrow A \times \overrightarrow B = 0$
$\overrightarrow A \,.\,\overrightarrow B = 0$
Let $\overrightarrow A = \hat iA\,\cos \theta + \hat jA\,\sin \theta $ be any vector. Another vector $\overrightarrow B $ which is normal to $\overrightarrow A$ is
If diagonals of a parallelogram are $\left( {5\hat i - 4\hat j + 3\hat k} \right)$ and $\left( {3\hat i + 2\hat j - \hat k} \right)$ then its area is
If $\overrightarrow A \times \overrightarrow B=\overrightarrow B \times \overrightarrow A$ then the angle between $\overrightarrow A$ and $\overrightarrow B$ is
${\vec A }$, ${\vec B }$ and ${\vec C }$ are three non-collinear, non co-planar vectors. What can you say about directin of $\vec A \, \times \,\left( {\vec B \, \times \vec {\,C} } \right)$ ?