3 and 4 .Determinants and Matrices
normal

Consider system of equations  $ x + y -az = 1$  ;  $2x + ay + z = 1$   ; $ax + y -z = 2$

A

for $a \ne 1$ system has unique solution.

B

if system has no solution then $'a'$ must be $1$ .

C

for $a \in \left\{ {1,\frac{{ - 1 \pm \sqrt 5 }}{2}} \right\}$ , system has no solution.

D

for $a = \frac{{ - 1 \pm \sqrt 5 }}{2}$ , system has infinite number of solutions.

Solution

$\Delta=\left|\begin{array}{ccc}{1} & {1} & {-a} \\ {2} & {a} & {1} \\ {a} & {1} & {-1}\end{array}\right|=1(-a-1)-1(-2-a)-a\left(2-a^{2}\right)$

$=a^{3}-2 a+1=(a-1)\left(a^{2}+a-1\right)$

$=(a-1)\left(a-\frac{-1-\sqrt{5}}{2}\right)\left(a-\frac{-1+\sqrt{5}}{2}\right)$

For $\Delta=0$

$a=1, \frac{-1 \pm \sqrt{5}}{2}$

for each value system has no solution.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.