Let $S$ be the set of all real values of $k$ for which the system oflinear equations $x +y + z = 2$ ; $2x +y - z = 3$ ; $3x + 2y + kz = 4$ has a unique solution. Then $S$ is
an empty set
equal to $R- \{0\}$
equal to $\{0\}$
equal to $R$
The system of equations $4x + y - 2z = 0\ ,\ x - 2y + z = 0$ ; $x + y - z =0 $ has
If the system of equations $x - ky - z = 0$, $kx - y - z = 0$ and $x + y - z = 0$ has a non zero solution, then the possible value of k are
If the system of linear equations $2 x+3 y-z=-2$ ; $x+y+z=4$ ; $x-y+|\lambda| z=4 \lambda-4$ (where $\lambda \in R$), has no solution, then
The number of values of $k $ for which the system of equations $(k + 1)x + 8y = 4k,$ $kx + (k + 3)y = 3k - 1$ has infinitely many solutions, is
If $a, b, c$ are three complex numbers such that $a^2 + b^2 + c^2 = 0$ and $\left| {\begin{array}{*{20}{c}}
{\left( {{b^2} + {c^2}} \right)}&{ab}&{ac}\\
{ab}&{\left( {{c^2} + {a^2}} \right)}&{bc}\\
{ac}&{bc}&{\left( {{a^2} + {b^2}} \right)}
\end{array}} \right| = K{a^2}{b^2}{c^2}$ then value of $K$ is