दीर्घवृत (ellipse) $\frac{x^2}{9}+\frac{y^2}{4}=1$ पर विचार कीजिये। माना कि $S(p, q)$ प्रथम चतुर्थांश (first quadrant) में एक इस प्रकार का बिंदु है कि $\frac{p^2}{9}+\frac{q^2}{4}>1$ है । बिंदु $S$ से दीर्घवृत के लिए दो स्पर्श रेखाएं (tangents) खींची गयी हैं, जिनमें से एक रेखा, दीर्घवृत पर लघु अक्ष (minor axis) के एक अंत्य बिंदु (end point) पर मिलती है तथा दूसरी रेखा चौथे चतुर्थांश (fourth quadrant) में दीर्घवृत के एक बिंदु $T$ पर मिलती है। माना कि $R$ दीर्घवृत का वह शीर्ष (vertex) है जिसका $x$-निर्देशांक ( $x$-coordinate) धनात्मक (positive) है, और दीर्घवृत का केंद्र $O$ है। यदि त्रिभुज $\triangle O R T$ का क्षेत्रफल $\frac{3}{2}$ है, तब निम्नलिखित विकल्पों में से कौन सा सही है?
$q=2, p=3 \sqrt{3}$
$q=2, p=4 \sqrt{3}$
$q=1, p=5 \sqrt{3}$
$q=1, p=6 \sqrt{3}$
मूल अक्षों के सापेक्ष दीर्घवृत्त जिसकी नाभिलम्ब $8$ है और जिसकी उत्केन्द्रता $\frac{1}{{\sqrt 2 }}$है, का समीकरण होगा
दीर्घवृत्त $25{(x + 1)^2} + 9{(y + 2)^2} = 225$ की नाभियाँ हैं
प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए
दीर्घ अक्ष के अंत्य बिंदु $(\pm 3,0),$ लघु अक्ष के अंत्य बिंदु $(0,±2)$
दीर्घवृत्त $9{x^2} + 4{y^2} = 1$ के नाभिलम्ब की लम्बाई है
माना दीर्घवृत्त $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a>b$ की उत्केन्द्रता $\frac{1}{\sqrt{2}}$ है तथा नाभिलंब जीवा की लम्बाई $\sqrt{14}$ है, तो $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ की उत्केन्द्रता का वर्ग है :