यदि दो भिन्न शाकवों $x^2+y^2=4 b$ तथा $\frac{x^2}{16}+\frac{y^2}{b^2}=1$ के प्रतिच्छेदन बिंदु, वक्र $y^2=3 x^2$ पर है, तो प्रतिच्छेदन बिंदुओं से बने आयत के क्षेत्रफल का $3 \sqrt{3}$ गुना है ............|
$432$
$456$
$123$
$789$
माना दीर्घवृत्त $\frac{x^2}{36}+\frac{y^2}{4}=1$ के बिंदु $(3 \sqrt{3}, 1)$ पर स्पर्श रेखा तथा अभिलंब $\mathrm{y}$-अक्ष को क्रमशः बिंदुओं $\mathrm{A}$ तथा $B$ पर मिलते हैं। माना $A B$ को एक व्यास लेकर खींचा गया वृत्त $C$ है तथा रेखा $x=2 \sqrt{5}$, वृत्त $C$ को बिंदुओं $\mathrm{P}$ तथा $\mathrm{Q}$ पर काटती है। यदि वृत्त के बिंदुओं $P$ तथा $Q$ पर स्पर्श रेखाओं का प्रतिच्छेदन बिंदु $(\alpha, \beta)$ है, तो $\alpha^2-\beta^2$ बराबर है
दीर्घवृत्त $4{x^2} + 9{y^2} - 16x - 54y + 61 = 0$के सापेक्ष बिन्दु $(1, 3)$ की स्थिति है
दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ व वृत्त ${x^2} + {y^2} = ab$ का प्रतिच्छेद कोण है
यदि दीर्घवृत्त का केन्द्र $(0, 0)$, एक नाभि $(0, 3)$ तथा अर्ध दीर्घ अक्ष $5$ हो, तो उसका समीकरण है
यदि $P \equiv (x,\;y)$, ${F_1} \equiv (3,\;0)$, ${F_2} \equiv ( - 3,\;0)$ और $16{x^2} + 25{y^2} = 400$ तो $P{F_1} + P{F_2}$ का मान है