- Home
- Standard 11
- Mathematics
दीर्घवृत्त (ellipse)
$\frac{x^2}{4}+\frac{y^2}{3}=1$
पर विचार कीजिए। माना कि $H (\alpha, 0), 0<\alpha<2$, एक बिंदु (point) है। बिंदु $H$ से होती हुई एवं $y$-अक्ष के समांतर (parallel to the $y$-axis) एक सरल रेखा (straight line) दीर्घवृत्त एवं इसके सहवृत्त (auxiliary circle) को प्रथम चतुर्थांश (first quadrant) में क्रमशः बिंदुओं $E$ एवं $F$ पर प्रतिच्छेदित (intersect) करती है। बिंदु $E$ पर दीर्घवृत्त की स्पर्श रेखा (tangent) धनात्मक $x$-अक्ष को एक बिंदु $G$ पर प्रतिच्छेदित करती है। मान लिजिए कि $F$ एवं मूलबिंदु (origin) को जोड़ने वाली सरल रेखा, धनात्मक $x$-अक्ष के साथ एक कोण (angle) $\phi$ बनाती है।
$List-I$ | $List-II$ |
यदि $\phi=\frac{\pi}{4}$ है, तब त्रिभुज $F G H$ का क्षेत्रफल | ($P$) $\frac{(\sqrt{3}-1)^4}{8}$ |
यदि $\phi=\frac{\pi}{3}$ है, तब त्रिभुज $F G H$ का क्षेत्रफल | ($Q$) $1$ |
यदि $\phi=\frac{\pi}{6}$ है, तब त्रिभुज $F G H$ का क्षेत्रफल | ($R$) $\frac{3}{4}$ |
यदि $\phi=\frac{\pi}{12}$ है, तब त्रिभुज $F G H$ का क्षेत्रफल | ($S$) $\frac{1}{2 \sqrt{3}}$ |
($T$) $\frac{3 \sqrt{3}}{2}$ |
सही विकल्प हैं :
$(I) \rightarrow (R); (II) \rightarrow (S); (III) \rightarrow (Q); (IV) \rightarrow (P)$
$(I) \rightarrow (R); (II) \rightarrow (T); (III) \rightarrow (S); (IV) \rightarrow (P)$
$(I) \rightarrow (Q); (II) \rightarrow (T); (III) \rightarrow (S); (IV) \rightarrow (P)$
$(I) \rightarrow (Q); (II) \rightarrow (S); (III) \rightarrow (Q); (IV) \rightarrow (P)$
Solution

Let $F (2 \cos \phi, 2 \sin \phi)$ $\& E (2 \cos \phi, \sqrt{3} \sin \phi)$
$\text { EG }: \frac{x}{2} \cos \phi+\frac{ y }{\sqrt{3}} \sin \phi=1$
$\therefore G \left(\frac{2}{\cos \phi}, 0\right) \text { and } \alpha=2 \cos \phi$
$\operatorname{ar}(\Delta FGH )=\frac{1}{2} HG \times FH$
$=\frac{1}{2}\left(\frac{2}{\cos \phi}-2 \cos \phi\right) \times 2 \sin \phi$
$f (\phi)=2 \tan \phi \sin ^2 \phi$
$\therefore$ (I) $f\left(\frac{\pi}{4}\right)=1$
$(II)$ $f\left(\frac{\pi}{3}\right)=\frac{3 \sqrt{3}}{2}$
$(III)$ $f\left(\frac{\pi}{6}\right)=\frac{1}{2 \sqrt{3}}$
$(IV)$ $f\left(\frac{\pi}{12}\right)=2(2-\sqrt{3})\left(\frac{\sqrt{3}-1}{2 \sqrt{2}}\right)^2=(4-2 \sqrt{3}) \frac{(\sqrt{3}-1)^2}{8}=\frac{(\sqrt{3}-1)^4}{8}$
$\therefore( I ) \rightarrow( Q ) ; \text { (II) } \rightarrow \text { (T) ; (III) } \rightarrow \text { (S) ; IV) } \rightarrow( P )$